On the Versatility of Logical Relations

Joint work with Gilles Barthe, Ugo Dal Lago, Francesco Gavazzo

Raphaëlle Crubillé

IMDEA

January 30, 2020

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Soundness of a refinement type [system for local](#page-23-0) continuity

[Conclusion](#page-30-0)

 QQ

1 / 34

Outline

[Containment Theorems by way of open logical relations](#page-2-0)

[Correctness for Automatic Differentiation Algorithms](#page-13-0)

[Soundness of a refinement type system for local continuity](#page-23-0)

[Conclusion](#page-30-0)

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

[Correctness for](#page-13-0) Automatic **Differentiation Algorithms**

Soundness of a refinement type [system for local](#page-23-0) continuity

[Conclusion](#page-30-0)

 $\mathbf{A} \equiv \mathbf{A} + \math$ QQ

(First-Order) Containment in Principle

A (terminating) programming language built from:

- \blacktriangleright real numbers as data type;
- ightharpoonup a family \mathcal{F} of primitive functions $\mathbb{R}^n \to \mathbb{R}^m$;
- \triangleright programming constructs: variables assignments, if, $while...$

Program interpretation:

real-valued functions $\mathcal{M} \mathcal{M} \colon \mathbb{R}^n \to \mathbb{R}^m$

Definition (Containment Property)

We suppose a (compositionnal) predicate P on functions such that $\forall f \in \mathcal{F}, \mathcal{P}(f)$.

P is contained when: $\forall M$ a program, $\mathcal{P}(\llbracket M \rrbracket)$ holds.

Raphaëlle Crubillé

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Soundness of a refinement type [system for local](#page-23-0) continuity

A Simple Example: (Global) Continuity.

 $\mathcal{P} = \mathsf{Cont} := \{f : \mathbb{R}^n \to \mathbb{R}^m \mid f \text{ is continuous } \}.$

Fact

Cont is contained for a restricted language:

- \blacktriangleright sequencing, variable assignment;
- \blacktriangleright no if, no while

Example

$$
M = x := x + y; x := 3 + x2; y := y + 1
$$

$$
[M] : (x, y) \in \mathbb{R}^{2} \mapsto (3 + (x + y)2, y + 1) \in \mathbb{R}^{2}
$$

 \mathcal{M} is indeed a continuous function.

Proof. The predicate Cont is compositionnal.

Raphaëlle Crubillé

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Soundness of a refinement type [system for local](#page-23-0) continuity

[Conclusion](#page-30-0)

 QQ

Higher-Order Languages

Higher-order Programming Languages: functions are *first-class citizens*:

- \blacktriangleright they can be passed as argument;
- \blacktriangleright they can be returned as output.

Motivations

- **I** code reuse
- \blacktriangleright modularity
- \blacktriangleright conciseness

Example

Higher-order languages:

- \blacktriangleright Haskell, ML, Java, Python, Scala ...
- \blacktriangleright Model: λ -calculus (Church 1930s)

Raphaëlle Crubillé

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Soundness of a refinement type [system for local](#page-23-0) continuity

Simply-typed λ -calculus with reals as base type

The types $\tau ::= R | \tau \times \tau | \tau \rightarrow \tau$ Example (An order 2 type) $(R \to R) \to (R \times (R \to R))$

The programs

$$
t \in \Lambda_\mathbb{R}^\mathcal{F} ::= x \mid \underline{r} \mid \underline{f}(t, \ldots, t) \qquad \text{with } f \in \mathcal{F}, r \in \mathbb{R}
$$

$$
\mid \lambda x. t \mid tt \mid (t, t) \mid t. 1 \mid t. 2 \mid \text{if } t \text{ then } t \text{ else } t
$$

Remark

The type system ensures termination–even strong normalization–of all programs.

Raphaëlle Crubillé

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Soundness of a refinement type [system for local](#page-23-0) continuity

A first-order program in $\Lambda_{\mathbb{R}}$

Example $(M : R \rightarrow R$ build using HO components) We suppose f_1 , f_2 two primitives functions.

$$
M[f_1, f_2] := \lambda y \cdot \begin{pmatrix} \lambda x \cdot (x(y+1) + x(y-1)) \\ (\lambda z \cdot \text{if } z > 0 \text{ then } \underline{f_1}(z) \text{ else } \underline{f_2}(z)) \end{pmatrix}
$$

$$
\llbracket M \rrbracket [f_1, f_2] : \mathbb{R} \to \mathbb{R} \n y \mapsto \begin{cases} f_1(y+1) + f_1(y-1) \text{ when } y-1 > 0 \\ f_1(y+1) + f_2(y-1) \text{ when } y-1 \le 0 < y+1 \\ f_2(y+1) + f_2(y-1) \text{otherwise} \end{cases}
$$

Raphaëlle Crubillé

[Correctness for](#page-13-0) Automatic **Differentiation Algorithms**

Soundness of a refinement type [system for local](#page-23-0) continuity

The Question

How to extend containment theorems to this higher-order framework ?

Raphaëlle Crubillé

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Soundness of a refinement type [system for local](#page-23-0) continuity

A Proof Scheme for Higher-Order Programs: Logical Relations

Used in the literature to study:

- \blacktriangleright lambda-definability;
- ▶ program termination (Gödel's system T (Tait 1967), System F (Girard 1972) ...)

Raphaëlle Crubillé

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Soundness of a refinement type [system for local](#page-23-0) continuity

A toy example: termination for $\Lambda_{\mathbb{R}}$

Defining Predicates on **closed** terms:

$$
Red_R := \{ t \mid \vdash t : R \land t \text{ terminates } \}
$$

$$
Red_{\tau \to \sigma} := \{ t \mid \vdash t : \tau \to \sigma \land \forall s \in Red_{\tau}, \text{ ts } \in Red_{\sigma} \} \dots
$$

Extending predicates to **open** terms via substitutions For $\Gamma = x_1 : \tau_1, \ldots, x_n : \tau_n$:

 $\mathsf{Red}_{\Gamma} = \{ \gamma : \{\textsf{variables}\} \rightarrow \{\textsf{programs}\} \mid \forall i, \ \gamma(x_i) \in \mathsf{Red}_{\tau_i}\}$ $\mathsf{Red}_{\tau}^{\mathsf{F}}=\{t \mid \mathsf{F}\vdash t : \tau \text{ s.t.}\forall \gamma\in \mathsf{Red}_{\mathsf{F}},\ t\gamma\in \mathsf{Red}_{\tau}\}$

To end the proof: $\Gamma \vdash t : \tau \Leftrightarrow t \in \mathit{Red}^{\Gamma}_{\tau}$. (By induction of the structure of the **open** term t : Base cases $t = x, t = r \ldots$

KORK EXTERNS ARR

Raphaëlle Crubillé

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Soundness of a refinement type [system for local](#page-23-0) continuity

Proving Containment theorems by way of Logical Relations?

Problem

- \triangleright Logical relations are designed for 0-order properties: termination, equivalence between programs...
- \triangleright We are interested in first-order properties, i.e. predicates on functions: continuity, polynomials, differentiability...

Raphaëlle Crubillé

[Correctness for](#page-13-0) Automatic **Differentiation Algorithms**

Soundness of a refinement type [system for local](#page-23-0) continuity

Our Solution: Open Logical Relations

Defining predicated on **open** terms-with real variables only context

 Θ : x_1 : R, \ldots , x_n : R.

$$
t \in \mathcal{F}_{\mathsf{R}}^{\Theta} \iff (\Theta \vdash t : \mathsf{R} \land [\hspace{-1.5pt}[\Theta \vdash t : \mathsf{R}]\hspace{-1.5pt}]\in \mathfrak{F})
$$

$$
t \in \mathcal{F}_{\tau_1 \to \tau_2}^{\Theta} \iff (\Theta \vdash t : \tau_1 \to \tau_2 \land \forall s \in \mathcal{F}_{\tau_1}^{\Theta} \colon ts \in \mathcal{F}_{\tau_2}^{\Theta})
$$

Extending predicates to **open** terms via substitutions–for any context

For
$$
\Gamma = x_1 : \tau_1, \ldots, x_n : \tau_n
$$
:

$$
\mathcal{F}_{\Gamma}^{\Theta} = \{ \gamma : \{ \text{variables} \} \to \{ \text{progress} \} \mid \forall i, \ \gamma(x_i) \in \mathcal{F}_{\tau_i}^{\Theta} \}
$$
\n
$$
\mathcal{F}_{\tau}^{\Theta, \Gamma} = \{ t \mid \Theta, \Gamma \vdash t : \tau \text{ s.t.} \forall \gamma \in \mathcal{F}_{\Gamma}^{\Theta}, \ t \gamma \in \mathcal{F}_{\tau}^{\Theta} \}
$$

To end the proof: $\Gamma, \Theta \vdash t : \tau \Leftrightarrow t \in \mathcal{F}_{\tau}^{\Theta,\Gamma}.$

Raphaëlle Crubillé

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Soundness of a refinement type [system for local](#page-23-0) continuity

[Conclusion](#page-30-0)

 QQ

Theorem (Containment Theorem)

 $\mathfrak{F}:$ a collection of real-valued functions including projections and closed under function composition. Then, any $\bigwedge^{\times,-+,{\mathsf{R}}}_{\mathfrak{F}}$ term $x_1 : R_1, \ldots, x_n : R_n \vdash t : R$ denotes a function (from \mathbb{R}^n to \mathbb{R}) in \mathfrak{F} .

Example

- $\triangleright \ \mathfrak{F} = \{$ continuous functions $\}$
- $\triangleright \ \mathfrak{F} = \{$ polynomial functions $\}$

Remark

It can also be deduced from a categorical theorem due to Lafont (1988).

Raphaëlle Crubillé

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Soundness of a refinement type [system for local](#page-23-0) continuity

Application of Open Logical Relations (1)

Correctness for Automatic Differentiation Algorithms

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

Soundness of a refinement type [system for local](#page-23-0) continuity

Automatic Differentiation Algorithms

Goal

Compute the derivative of a computer program representing a real-valued function.

By propagating the chain rule accross the syntax tree of the program.

Increasing interest in the community of programming languages

- \triangleright Used for gradient descent \Rightarrow applications in machine-learning, physical models...
- \blacktriangleright Automatic differentiation systems: Tensor Flow, Stan...
- \triangleright Until recently, not much theoretical foundations, formal proofs techniques (this year: Pagani et al's POPL 2020, Staton et al's FOSSACS 2020) . . .

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

Soundness of a refinement type [system for local](#page-23-0) continuity

Forward AD in practice

Our reference (Forward Mode)

Jones et al's: "Efficient differentiable programming in a functional array-processing language" (only the functionnal core of their algorithm (no if, no iteration, no array...))

The language

Simply typed $\Lambda^{\mathfrak{F}}_{\mathbb{R}}$ with $\mathfrak{F}\subseteq \{ \mathsf{differential} \mathsf{ble} \ \mathsf{functions} \}$

A program transformation

- $D:$ {Programs} \rightarrow {Programs}
	- \triangleright built by induction on the program structure.
	- \triangleright Dt embedds the information of **both** the original program t and its derivatives.

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

Soundness of a refinement type [system for local](#page-23-0) continuity

General Typing invariant

 $\lambda x. t : \tau_1 \to \tau_2 \Rightarrow \lambda dx_1 Dt : D\tau_1 \to D\tau_2$

D on Types

 $DR = R \times R$ $D(\tau_1 \times \tau_2) = D\tau_1 \times D\tau_2$ $D(\tau_1 \rightarrow \tau_2) = D\tau_1 \rightarrow D\tau_2$ 000

The transformation D (2)

D on Terms

$$
D\underline{r} = (\underline{r}, \underline{0}) \qquad \mathbf{D}x = \mathbf{d}x \qquad \mathbf{D}\lambda x. t = \lambda \mathbf{d}x. \mathbf{D}t
$$
\n
$$
D(\underline{f}(t_1, \ldots, t_n)) = (\underline{f}(\mathbf{D}t_1.1, \ldots, \mathbf{D}t_n.1), \qquad \sum_{i=1}^n \frac{\partial_{x_i} f(\mathbf{D}t_1.1, \ldots, \mathbf{D}t_n.1) * \mathbf{D}t_i.2)
$$
\n...
\n
$$
\qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\napplication
\nof the chain
\nrule

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

Soundness of a refinement type [system for local](#page-23-0) continuity

[Conclusion](#page-30-0)

イロト イ団 ト イミト イヨト 一番 299 Example $(t = (\lambda(x, y), \sin(x) + \cos(y)))$

$$
Dt = \lambda(dx, dy).(\sin(dx.1) + \cos(dy.1),
$$

$$
\cos(dx.1) * dx.2 - \sin(dy.1) * dy.2).
$$

:\n
$$
(R \times R) \times (R \times R) \rightarrow R \times R
$$

Question: How to recover the partial derivatives of $\llbracket t \rrbracket : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$?

Dual Expressions

$$
\text{dual}_x(y) = \begin{cases} (y, \underline{1}) & \text{if } x = y \\ (y, \underline{0}) & \text{otherwise.} \end{cases} \quad : \mathbb{R} \times \mathbb{R}.
$$

Example

$$
\lambda(x, y) \cdot (Dt(\text{dual}_x(x))(\text{dual}_x(y)).2) \qquad : R \times R \to R
$$

$$
\equiv^{ctx} \cos(x) * 1 - \sin(y) * 0 \equiv^{ctx} \frac{\partial [t]}{\partial x}
$$

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

Soundness of a refinement type [system for local](#page-23-0) continuity

[Conclusion](#page-30-0)

19 / 34

Correctness

Theorem

For any term $t: \mathbb{R}^n \to \mathbb{R}$ the term $Dt: \mathbb{DR}^n \to \mathbb{DR}$ computes the partial derivatives of t, in the sense that for any $k \in \{1, \ldots, n\}$ we have

$$
\frac{\partial \llbracket t \rrbracket}{\partial x_k} = \llbracket \lambda(x_1,\ldots,x_n).(\texttt{Dt}(\texttt{dual}_{x_k}(x_1)),\ldots,(\texttt{dual}_{x_k}(x_n))).2\rrbracket
$$

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

Soundness of a refinement type [system for local](#page-23-0) continuity

Logical Relations for Automatic Differentiation (1)

A binary relation:

 $\mathcal{R}^\Theta_\texttt{R} \subseteq \{\mathit{programs}\} \times \{\mathit{programs}\}$

Reminder: Base case for continuity

$$
\Theta: x_1: \mathbb{R}, \ldots, x_n: \mathbb{R}
$$

$$
t \in \mathcal{F}_{\mathbb{R}}^{\Theta} \iff (\Theta \vdash t: \mathbb{R} \land [\![\Theta \vdash t: \mathbb{R}]\!]: \mathbb{R}^n \to \mathbb{R} \in \mathfrak{F})
$$

Base Case for AD

 Θ : x_1 : R, . . . , x_n : R; D Θ : d x_1 : R \times R, . . . , d x_n : R \times R.

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

Soundness of a refinement type [system for local](#page-23-0) continuity

[Conclusion](#page-30-0)

$$
t\mathcal{R}_{R}^{\Theta}s \iff \begin{cases} \Theta \vdash t : R \land D\Theta \vdash s : R \times R \\ \forall y : R. [\Theta \vdash s[dual_{y}(x_{1})/dx_{1}, \ldots, dual_{y}(x_{n})/dx_{n}].1 : R] \\ = [\Theta \vdash t : R] \\ \forall y : R. [\Theta \vdash s[dual_{y}(x_{1})/dx_{1}, \ldots, dual_{y}(x_{n})/dx_{n}].2 : R] \\ = \partial_{y}[\Theta \vdash t : R] \end{cases}
$$

 QQ

Logical Relations for Automatic Differentiation (2)

Reminder: HO construction of \mathcal{F}^{Θ} for continuity $t\in \mathcal{F}^\Theta_{\tau_1 \to \tau_2} \iff (\Theta \vdash t : \tau_1 \to \tau_2 \land \forall s \in \mathcal{F}^\Theta_{\tau_1} . \;ts \in \mathcal{F}^\Theta_{\tau_2})$ \rightarrow construct for AD

$$
t R_{\tau_1 \to \tau_2}^{\Theta} s \iff \begin{cases} \Theta \vdash t : \tau_1 \to \tau_2 \land D\Theta \vdash s : D\tau_1 \to D\tau_2 \\ \forall p, q. \; p R_{\tau_1}^{\Theta} q \implies tp R_{\tau_2}^{\Theta} sq \end{cases}
$$

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

Soundness of a refinement type [system for local](#page-23-0) continuity

Proof of the Correctness Theorem by way of Logical Relations

Lemma (Fundamental Lemma)

For all environments $Γ, Θ$ and for any expression $Γ, Θ ⊢ t : τ$. we have $t\mathcal{R}_{\tau}^{\Gamma,\Theta}$ Dt.

From there, we can deduce the correctness theorem.

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

Soundness of a refinement type [system for local](#page-23-0) continuity

Application of Open Logical Relations (2)

Local Continuity Properties in a language with an if construct

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Continuity and the if-construct

Observation

The if-construct breaks global continuity

Objective

Build a logical system to obtain continuity (local) guarantees on programs.

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

[Correctness for](#page-13-0) Automatic **Differentiation Algorithms**

Containing Local Continuity Properties: Chaudhuri et al's logical system

Formal analysis of first-order programs Judgments of the form:

 $b \vdash Cont(M, X)$

- \triangleright b: a boolean condition:
- \triangleright X a set of variables

designed to guarantee: $[M] : \mathbb{R}^n \to \mathbb{R}$ is continuous along
the variable in X on all points that validates the condition the variable in X on all points that validates the condition b .

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Dealing with the if construct

We suppose three programs M_1 , M_2 , M_3 with $b_i \vdash Cont(M_i,X);$

Problem

Build a boolean condition c such that:

 $c \vdash$ Cont(if M_1 then M_2 else M_3 , X)

Chaudhuri et al's Principle

- Ask $b_2 = b_3$: the domain of continuity of the branch is the same;
- In every discontinuity points x of M_1 , $M_2(x)$ and $M_3(x)$ must coincide: $b_2 \wedge \neg b_1 \Rightarrow M_2 \equiv_{obs} M_3$.

KORK EXTERNS ARR

Then we can conclude:

 b_2 \vdash Cont(if M_1 then M_2 else M_3 , X).

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Our Contribution The Language

 $\Lambda^{\mathfrak{F}}_{\mathbb{R}}+$ if-construct

with $\mathfrak F$ any set of functions $\mathbb R^n\to\mathbb R$ (not necessarily continuous)

Our system

 \triangleright A refinment type system (add to types logical formulas ϕ ... to specify domains of \mathbb{R}^n); An instance of refined type:

$$
\{\alpha_1 \in \mathbb{R}\}, \dots \{\alpha_n \in \mathbb{R}\}^{\psi \leadsto \phi} \{\alpha \in \mathbb{R}\}
$$

- \triangleright in the spirit of Chaudhuri et al's for the FO fragment;
- ighth designed to show: the program $t : \mathbb{R}^n \to \mathbb{R}$ is continuous on $\{x \in \mathbb{R}^n \mid x \models \phi\}$

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Local Continuity on an Example

Example $(M: \mathbb{R} \to \mathbb{R}$ build using HO components) We suppose f_1 , f_2 two primitives functions.

$$
\begin{aligned} M[f_1,f_2] &:= \lambda y.\left(\begin{array}{c} \lambda x.(x(y+1)+x(y-1))\\ (\lambda z. \text{if } z>0 \text{ then } \underline{f_1}(z) \text{ else } \underline{f_2}(z)) \end{array}\right) \right.\\ \left.\left.\begin{array}{c} [M] \colon y\in\mathbb{R} \mapsto \begin{cases} f_1(y+1)+f_1(y-1) \text{ when } y-1>0\\ f_1(y+1)+f_2(y-1) \text{ when } y-1\leq 0 < y+1\\ f_2(y+1)+f_2(y-1) \text{otherwise} \end{cases}\right. \end{aligned}
$$

In our system, we can show:

- \triangleright M[f₁, f₂] is continuous on $\{x \mid x \neq 1 \land x \neq -1\};$
- \blacktriangleright M[f₁, f₂] is continuous everywhere as soon as $f_1(1) = f_2(1)$ and $f_1(-1) = f_2(-1)$.

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Soundness of our Refined Type System

Theorem

Let t be any program such that:

$$
x_1: \{\alpha_1 \in \mathbb{R}\}, \ldots, x_n: \{\alpha_n \in \mathbb{R}\} \stackrel{\theta \leadsto \theta'}{\vdash_{\mathbf{r}}} t: \{\beta \in \mathbb{R}\}.
$$

Then it holds that:

- $\blacktriangleright \ \llbracket t \rrbracket (Dom(\theta))^{\alpha_1,...,\alpha_n} \subseteq Dom(\theta')^\beta;$
- \blacktriangleright $\llbracket t \rrbracket$ is sequentially continuous on $\mathsf{Dom}(\theta))^{\alpha_1,\dots,\alpha_n}$.

Proof

By way of open logical relations.

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Conclusion

Contributions

- \blacktriangleright flexibility of Open Logical Relations to show containement of first-order predicate or properties to an higher-order language;
- ▶ A proof-of-concept for proving correctness of AD algorithms in a functionnal setting
- \triangleright A logical system to guarantee local continuity for higher-order programs

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Soundness of a refinement type [system for local](#page-23-0) continuity

Conclusion

Future works

- Extension of our correctness proof for AD to **backward** differentiation algorithm;
- \triangleright Adapting our refinement type system to deal with the if construct in the context of AD (checking differentiability in critical points)
- \blacktriangleright Implement our refinement type system using standard SMT-based approach (as done for standard refinement types).

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

[Correctness for](#page-13-0) Automatic **Differentiation Algorithms**

Soundness of a refinement type [system for local](#page-23-0) continuity

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Soundness of a refinement type [system for local](#page-23-0) continuity

 2990

$$
\frac{\Gamma \vdash t_1: \mathbb{R} \cdots \Gamma \vdash t_n: \mathbb{R}}{\Gamma \vdash \underline{r}: \mathbb{R}} \qquad \frac{\Gamma \vdash t_1: \mathbb{R} \cdots \Gamma \vdash t_n: \mathbb{R}}{\Gamma \vdash \underline{f}(t_1, \ldots, t_n): \mathbb{R}}
$$
\n
$$
\frac{\Gamma, x: \tau_1 \vdash t: \tau_2}{\Gamma \vdash \lambda x. t: \tau_1 \rightarrow \tau_2}
$$
\n
$$
\frac{\Gamma \vdash s: \tau_1 \rightarrow \tau_2 \Gamma \vdash t: \tau_1}{\Gamma \vdash st: \tau_2} \qquad \frac{\Gamma \vdash t_1: \tau \Gamma \vdash t_2: \sigma}{\Gamma \vdash (t_1, t_2): \tau \times \sigma}
$$
\n
$$
\frac{\Gamma \vdash t: \tau_1 \times \tau_2}{\Gamma \vdash t. i: \tau_i} \quad (i \in \{1, 2\})
$$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ ○ 결 ○

33 / 34

Our Rule for the if-then-else

$$
\begin{array}{ll}\n\begin{array}{cccc}\n\theta_{t} \leadsto (\beta = 0 \lor \beta = 1) \\
\Gamma & \vdash_{\mathbf{r}} & t : \{\beta \in \mathbf{R}\} \\
\theta_{(t,0)} \leadsto (\beta = 0) & & \Gamma \vdash_{\mathbf{r}} s : T \\
\Gamma & \vdash_{\mathbf{r}} & t : \{\beta \in \mathbf{R}\} \\
\theta_{(t,1)} \leadsto (\beta = 1) & & \Gamma \vdash_{\mathbf{r}} p : T \\
\Gamma & \vdash_{\mathbf{r}} & t : \{\beta \in \mathbf{R}\} \\
\theta & & \Gamma \vdash_{\mathbf{r}} \text{if } t \text{ then } s \text{ else } p : T\n\end{array}\n\end{array}
$$

The side-conditions are given as:

- 1. $\models \theta \Rightarrow$ $((\theta^s \lor \theta^p) \land (\theta^{(t,1)} \lor \theta^p) \land (\theta^{(t,0)} \lor \theta^s) \land (\theta_t \lor (\theta_s \land \theta_p))).$
- 2. \forall logical assignment σ compatible with $G\Gamma$, $\sigma \models$ $\theta \wedge \neg \theta_t$ implies $H\Gamma \vdash s\sigma$ ^{G $\Gamma \equiv^{\mathsf{ctx}} p\sigma$ G Γ .}

Raphaëlle Crubillé

Containment [Theorems by way](#page-2-0) of open logical relations

[Correctness for](#page-13-0) Automatic **Differentiation** Algorithms

Soundness of a refinement type [system for local](#page-23-0) continuity