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(First-Order) Containment in Principle

A (terminating) programming language built from:

> real numbers as data type;
» a family F of primitive functions R" — R™;

Correctness for

> programming constructs: variables assignments, if, Automatic

Differentiation

Whlle .. Algorithms

Soundness of a
refinement type

Program interpretation: system for local

continuity

real-valued functions [M] : R" — R™ Conclusion

Definition (Containment Property)

We suppose a (compositionnal) predicate P on functions
such that Vf € F, P(f).
P is contained when: VM a program , P([M])holds.



A Simple Example: (Global) Continuity.

P = Cont := {f : R" — R™ | f is continuous }.

Fact Proof.
Cont is contained for a restricted The predicate Cont is . i
orrectness for
. 1+1 Automatic
language: compositionnal. [ pdemetic
. . Algorithms
> sequencing, variable
. Soundness of a
aSSIgn ment; refinement type
system for local
» no 1fy no while continuity
Conclusion
Example

M=x=x+y;x:=3+x%y=y+1
M]: (x,y) €R® = (3+ (x+y) y+1) € R?

[M] is indeed a continuous function.



Higher-Order Languages

Higher-order Programming Languages:
functions are first-class citizens:
> they can be passed as argument;

> they can be returned as output.

Example
Motivations Higher-order languages:
> code reuse » Haskell, ML, Java, Python,
» modularity Scala ...
> conciseness » Model: A-calculus (Church

1930s)
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Simply-typed A-calculus with reals as base type

The types Example (An order 2
type)

TUu=R|TXT|T—>T
(R—R)— (Rx (R—R))

The programs

te N s=x|r|f(t,... 1) with f € F,reR
| Ax.t | tt | (t, t) | t.1|¢t.2|if t then t else t

Remark
The type system ensures termination—even strong
normalization—of all programs.
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A first-order program in Ag

Example (M : R — R build using HO components)

We suppose fi, f, two primitives functions.

o Mx.(x(y +1)+x(y — 1))
M[f, fo] := Ay < ()\z.ifyz >0 ther{ﬁ(Z) else f(z)) )

[M[fi, k] : R—=R

Aly+1)+ Ay —1) wheny —1>0
y=shAly+1)+h(y—1)wheny—-1<0<y+1
f(y + 1) + fo(y — 1)otherwise

Correctness for
Automatic
Differentiation
Algorithms

Soundness of a
refinement type
system for local
continuity

Conclusion



The Question

How to extend containment
theorems to this higher-order
framework 7
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A Proof Scheme for Higher-Order Programs:
Logical Relations

Used in the literature to study:

» lambda-definability;

» program termination (Godel's system T (Tait 1967),
System F (Girard 1972) ...)
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Differentiation
Algorithms

Soundness of a
refinement type
system for local
continuity

Conclusion
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A toy example: termination for Ag

Defining Predicates on closed terms:

Redg := {t |F t : R A t terminates }
Red; o :={t|-t:T7— 0 AVs € Red,, ts € Red,} ...

Correctness for
Automatic

Differentiation
. . . . . Algorithms
Extending predicates to open terms via substitutions
Soundness of a
. . . fi
ForT =x1 :71,...,%Xn . Tn: ;Qt”cc.:mfg: ol

continuity

Redr = {~ : {variables} — {programs} | Vi, v(x;) € Red,} Conclusion
Red" = {t|TFt:7 stVy € Redr, ty € Red,}

To end the proof: THFt: Tt € Redg. (By induction of
the structure of the open term t: Base cases
t=x,t=r...)
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Proving Containment theorems by way of Logical
Relations?

Correctness for

Problem Automatic

Differentiation
Algorithms

» Logical relations are designed for O-order properties:
. . . Soundness of a
termination, equivalence between programs... refinement type

system for local

> We are interested in first-order properties, i.e. predicates  continuity
on functions: continuity, polynomials, differentiability... Conclusion
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Our Solution: Open Logical Relations

Defining predicated on open terms—with real variables
only context
.©:x1:R,...,Xp:R.

te FO <= (OFt:RA[OFt:R]€J)

teFO, <= (OFt:m > nAVseFO tse Fo

Extending predicates to open terms via substitutions—for
any context
Forl' =x1 :71,...,%Xpn: Tn:
F® = {~ : {variables} — {programs} | Vi, v(x;) € FS}
FOl —{t|©TFt:7stVyeFP, tye FO}

To end the proof: [, t: 7 & tc FOI.

Correctness for
Automatic
Differentiation
Algorithms

Soundness of a
refinement type
system for local
continuity

Conclusion
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Theorem (Containment Theorem)

§: a collection of real-valued functions including projections

and closed under function composition. Then, any N F
term x1 : R,...,Xxp : Ry b t : R denotes a function (from R”"
to R) n -S Correctness for
Automatic
Differentiation
EXampIe Algorithms
. . Soundness of a
> g - {Cont”"JOUS funCtlonS} refinement type
system .for' local
» § = {polynomial functions} continuity
Conclusion
Remark

It can also be deduced from a categorical theorem due to
Lafont (1988).
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Application of Open Logical Relations (1)

Correctness for Automatic
Differentiation Algorithms
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Automatic Differentiation Algorithms

Goal

Compute the derivative of a computer program representing

a real-valued function. (e

By propagating the chain rule accross the syntax tree of the of open logical

program.

Increasing interest in the community of programming

languages o

refinement type
» Used for gradient descent = applications in e
machine-learning, physical models... Conclusion

» Automatic differentiation systems: Tensor Flow, Stan...

» Until recently, not much theoretical foundations, formal
proofs techniques
(this year: Pagani et al's POPL 2020, Staton et al’s
FOSSACS 2020) ...
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Forward AD in practice

Our reference (Forward Mode)

Jones et al’s: " Efficient differentiable programming in a Containment
functional array-processing language” B
(only the functionnal core of their algorithm (no if, no e

iteration, no array...))

The language o
Simply typed /\% with § C {differentiable functions} refinement type

system for local
continuity

A program transformation Conclusion
D : {Programs} — {Programs}

> built by induction on the program structure.

» Dt embedds the information of both the original
program t and its derivatives.
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The transformation D (1)

. Type of dual
Intuition YP

numbers

\/ Containment

Theorems by way

AX.t:R—R = AdxDt:RxXR—RXR of open logical

/ ’\ relations

meaning: .
g meaning: the
the original . i
differential of t Seundnessofa
program t refinement type
system for local
continuity
General Typing invariant Conclusion

Ax.t:11 —> T = Adxy.Dt:D1p — D
D on Types

DR=R XR

D(T1><7'2):D7'1><D7'2 D(T1—>7'2):D7'1—>DT2
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The transformation D (2)

D on Terms

Containment
Theorems by way
of open logical

Dr = (r,0) Dx = dx DAx.t = Adx.Dt relations
D(f(t1,...,tn)) = (f(Dt1.1,...,Dtp.1),

refinement type
system for local

continuity
Conclusion

application
of the chain
rule

n
Z 8Xi f(Dtll, e ,Dtn].) * Dt,2) Soundness of a
i=1
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Example (t = (A(x, y).sin(x) + cos(y)))

Dt = A(dx, dy).(sin(dx.1) + cos(dy.1),
cos(dx.1) x dx.2 —sin(dy.1) * dy.2).
‘(R xR)x (RxR) >R xR Thecrems by way

of open logical
relations

Question: How to recover the partial derivatives of
[t] : RxR—-R?

Dual Expressions

Soundness of a

refinement type
1 f == system for local
dualx(y) = (yyi) X y R X R. continuity
(y’ Q) OtherW|se Conclusion
Example
A(x, y).(Dt(dualy(x))(dualy(y)).2) :RXR—R
tx 8[“]]

—ctx 1_—si —c
cos(x) * sin(y) 0 O
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Correctness

Containment
Theorems by way
of open logical

Theorem relations
For any term t : R” — R the term Dt : DR” — DR computes

the partial derivatives of t, in the sense that for any

k e {1,...,n} we have

Soundness of a
refinement type

8|It]] svsttcm ftor local
= [[A(Xl. e ,X,,).(Dt(dualxk(xl)), ey (dualxk(xn)))_z]] continuity

Conclusion

an
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Logical Relations for Automatic Differentiation

(1)
A binary relation:

Containment

RS g {programs} X {programs} Theorems by way

of open logical
relations

Reminder: Base case for continuity

©:x1:R,....xp:R
tcFY < (OFt:RA[OFt:R]:R" >R €F)

Soundness of a

Base Case fOI’ AD refinement type
system for local
©:x1:R,...,xpR; DO :dx; :RXR,...,dx,:R xR. continuity

Conclusion

©OFt:RADOFs:RxR
Vy :R.[© F s[dual,(x1)/dxi, ..., dualy(x,)/dx,].1 : R]
tRYSs <= :E{el—t:R]]
Vy :R. [© F s[dualy(x1)/dxy, ..., dual,(x,)/dxs].2 : R]
=0,[©F t:R]
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Logical Relations for Automatic Differentiation

(2)

Reminder: HO construction of F® for continuity

teFo_,, < (OFt:mi > nAVse FS. ts€ F2)

— construct for AD

t RO

T1—T2

Okt: 71 > ADOF s:Drp — D,
S o o
Vp.q. PR7 g = tpR7, sq

Containment
Theorems by way
of open logical
relations

Soundness of a
refinement type
system for local
continuity

Conclusion
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Proof of the Correctness Theorem by way of
Logical Relations

Lemma (Fundamental Lemma)

For all environments I', © and for any expression,© -t : T,
we have t RT© Dt.

From there, we can deduce the correctness theorem.

Containment
Theorems by way
of open logical
relations

Soundness of a
refinement type
system for local
continuity

Conclusion
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Application of Open Logical Relations (2)

Local Continuity Properties in a
language with an if construct
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Continuity and the if-construct

Observation
. . . COH alinmen
The if-construct breaks global continuity e T

of open logical

t X relations
IIt]] (X | [[ ]]( Correctness for

Automatic
Differentiation
Algorithms

><V

[y

T X if x <0 theh 1 else x +
if x <0 then! — x else x+1 Conclusion

Objective

Build a logical system to obtain continuity (local) guarantees
on programs.
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Containing Local Continuity Properties:
Chaudhuri et al’s logical system

Containment
Theorems by way

Formal analysis of first-order programs of open logical
relations
Judgments Of the form: Correctness for
Automatic
Differentiation
b l_ COI'It(M X) Algorithms
» b: a boolean condition; ol

» X a set of variables

designed to guarantee: [M] : R" — R is continuous along
the variable in X on all points that validates the condition b.
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Dealing with the if construct

We suppose three programs My, My, M3 with
b; - Cont(l\/l,-,X);

Problem Containment

Theorems by way
Build a boolean condition ¢ such that: O
Correctness for

C l_ Cont(lf Ml then M2 else M3’X) Automatic

Differentiation
Algorithms

Chaudhuri et al’s Principle

> Ask by = b3: the domain of continuity of the branch is Conclusion
the same;

> In every discontinuity points x of My, Ms(x) and M3(x)
must coincide: by A = by = My =,ps Ms3.

Then we can conclude:
by b Cont(if M; then M, else M3, X).
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Our Contribution
The Language

/\% + if-construct

with § any set of functions R” — R
(not necessarily continuous)

Our system

» A refinment type system (add to types logical
formulas ¢... to specify domains of R");
An instance of refined type:

{o1 €R}, ... {an € RS0 € R}

» in the spirit of Chaudhuri et al's for the FO fragment;

> designed to show: the program t : R” — R is
continuous on {x € R" | x = ¢}

Containment
Theorems by way
of open logical
relations

Correctness for

Automatic
Differentiation
Algorithms
Conclusion

28 /34



Local Continuity on an Example

Example (M : R — R build using HO components)
We suppose fi, f» two primitives functions.

Containment
. M.(x(y +1) +x(y — 1)) of ool
M[f, ] :== Ay. < (Az.if z > 0 then fi(z) else f(z)) ) :::;CSS N

Automatic

Ay +1)+ Ay —1) when y —1 >0 Agorms

M]:yeR—= <Ay +1)+h(y—1)wheny —1<0<y+1

f(y + 1) + f2(y — 1)otherwise

Conclusion

In our system, we can show:

» M|[fi, f] is continuous on {x | x # 1 A x # —1};

» MI[f1, f] is continuous everywhere as soon as
f(1) = (1) and A1(—1) = fH(-1).
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Soundness of our Refined Type System

Theorem
Let t be any program such that:

0~~0"

x1:{a1 €R},...,xp: {an €R} Fy t:{B ER}

Then it holds that:
> [t](Dom(@))1%n C Dom(@’)ﬁ;

> [t] is sequentially continuous on Dom(6))®1:n

Proof

By way of open logical relations.

Containment
Theorems by way
of open logical
relations
Correctness for
Automatic

Differentiation
Algorithms

Conclusion
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Conclusion

Contributions

» flexibility of Open Logical Relations to show
containement of first-order predicate or properties to an
higher-order language;

» A proof-of-concept for proving correctness of AD
algorithms in a functionnal setting

> A logical system to guarantee local continuity for
higher-order programs
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Conclusion

Future works

» Extension of our correctness proof for AD to backward
differentiation algorithm;

» Adapting our refinement type system to deal with the if
construct in the context of AD (checking
differentiability in critical points)

» Implement our refinement type system using standard
SMT-based approach (as done for standard refinement

types).
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Ft:R - Tk

‘R

Mx:7kx:7 l=r:R MEf(ty,...,th) R

Mx:mbEt:m
l=XMxt:m — 1

ltEs:mm—>m THEt:m l-t1:7 TkEt:o

-st:m MNe(t ) 7xo

lt:mxm .
Freion Ocil2h

Containment
Theorems by way
of open logical
relations

Correctness for
Automatic
Differentiation
Algorithms

Soundness of a
refinement type
system for local
continuity
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Our Rule for the if-then-else

0 (B=0Vp=1)
l_r b {/B < R} 95 Theorems by way
g(t'o)w(ﬁzo) r l_r S T 1 2 of open \o,gi’g:—:\ :
r l_r t . {B 6 R} Hp c + relations
H(t,l)“"’(ﬁzl) I |_r p: T Correctness for

Automatic

r l_]:‘ t: {B c R} Differentiation

Algorithms

Containment

0
. Soundness of a
r }_r lf t then S else p . T refinement type
system for local
continuity

The side-conditions are given as:

1. 0=
((05 Vv 0P) A (0D v 0P) A (0O v 65) A (8 V (05 A 6,))).

2. VY logical assignment o compatible with GI',0 =
6 A —0; implies HI F so ¢ = pg &7
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