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(First-Order) Containment in Principle

A (terminating) programming language built from:

I real numbers as data type;

I a family F of primitive functions Rn → Rm;

I programming constructs: variables assignments, if,
while. . .

Program interpretation:

real-valued functions JMK : Rn → Rm

Definition (Containment Property)

We suppose a (compositionnal) predicate P on functions
such that ∀f ∈ F , P(f ).
P is contained when: ∀M a program ,P(JMK)holds.

3 / 34



On the Versatility
of Logical
Relations
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A Simple Example: (Global) Continuity.

P = Cont := {f : Rn → Rm | f is continuous }.

Fact
Cont is contained for a restricted
language:

I sequencing, variable
assignment;

I no if, no while

Proof.
The predicate Cont is
compositionnal.

Example

M = x := x + y ; x := 3 + x2; y := y + 1

JMK : (x , y) ∈ R2 7→ (3 + (x + y)2, y + 1) ∈ R2

JMK is indeed a continuous function.
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Higher-Order Languages

Higher-order Programming Languages:

functions are first-class citizens:

I they can be passed as argument;

I they can be returned as output.

Motivations

I code reuse

I modularity

I conciseness

Example

Higher-order languages:

I Haskell, ML, Java, Python,
Scala . . .

I Model: λ-calculus (Church
1930s)
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Simply-typed λ-calculus with reals as base type

The types

τ ::= R | τ × τ | τ → τ

Example (An order 2
type)

(R→ R)→ (R× (R→ R))

The programs

t ∈ ΛFR ::= x | r | f (t, . . . , t) with f ∈ F , r ∈ R
| λx .t | tt | (t, t) | t.1 | t.2 | if t then t else t

Remark
The type system ensures termination–even strong
normalization–of all programs.
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A first-order program in ΛR

Example (M : R→ R build using HO components)

We suppose f1, f2 two primitives functions.

M[f1, f2] := λy .

(
λx .(x(y + 1) + x(y − 1))
(λz .if z > 0 then f1(z) else f2(z))

)

JMK[f1, f2] : R→ R

y 7→


f1(y + 1) + f1(y − 1) when y − 1 > 0

f1(y + 1) + f2(y − 1) when y − 1 ≤ 0 < y + 1

f2(y + 1) + f2(y − 1)otherwise
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The Question

How to extend containment
theorems to this higher-order

framework ?
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A Proof Scheme for Higher-Order Programs:
Logical Relations

Used in the literature to study:

I lambda-definability;

I program termination (Gödel’s system T (Tait 1967),
System F (Girard 1972) ...)
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A toy example: termination for ΛR

Defining Predicates on closed terms:

RedR := {t |` t : R ∧ t terminates }
Redτ→σ := {t |` t : τ → σ ∧ ∀s ∈ Redτ , ts ∈ Redσ} . . .

Extending predicates to open terms via substitutions

For Γ = x1 : τ1, . . . , xn : τn:

RedΓ = {γ : {variables} → {programs} | ∀i , γ(xi ) ∈ Redτi}
RedΓ

τ = {t | Γ ` t : τ s.t.∀γ ∈ RedΓ, tγ ∈ Redτ}

To end the proof: Γ ` t : τ ⇔ t ∈ RedΓ
τ . (By induction of

the structure of the open term t: Base cases
t = x , t = r . . .)
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Proving Containment theorems by way of Logical
Relations?

Problem

I Logical relations are designed for 0-order properties:
termination, equivalence between programs...

I We are interested in first-order properties, i.e. predicates
on functions: continuity, polynomials, differentiability...
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Our Solution: Open Logical Relations

Defining predicated on open terms–with real variables
only context

. Θ : x1 : R, . . . , xn : R.

t ∈ FΘ
R ⇐⇒ (Θ ` t : R ∧ JΘ ` t : RK ∈ F)

t ∈ FΘ
τ1→τ2

⇐⇒ (Θ ` t : τ1 → τ2 ∧ ∀s ∈ FΘ
τ1

. ts ∈ FΘ
τ2

)

Extending predicates to open terms via substitutions–for
any context

For Γ = x1 : τ1, . . . , xn : τn:

FΘ
Γ = {γ : {variables} → {programs} | ∀i , γ(xi ) ∈ FΘ

τi
}

FΘ,Γ
τ = {t | Θ, Γ ` t : τ s.t.∀γ ∈ FΘ

Γ , tγ ∈ FΘ
τ }

To end the proof: Γ, Θ ` t : τ ⇔ t ∈ FΘ,Γ
τ .
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Theorem (Containment Theorem)

F: a collection of real-valued functions including projections
and closed under function composition. Then, any Λ×,→,R

F

term x1 : R, . . . , xn : Rn ` t : R denotes a function (from Rn

to R) in F.

Example

I F = {continuous functions}
I F = {polynomial functions}

Remark
It can also be deduced from a categorical theorem due to
Lafont (1988).
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Application of Open Logical Relations (1)

Correctness for Automatic
Differentiation Algorithms
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Automatic Differentiation Algorithms

Goal
Compute the derivative of a computer program representing
a real-valued function.
By propagating the chain rule accross the syntax tree of the
program.

Increasing interest in the community of programming
languages

I Used for gradient descent ⇒ applications in
machine-learning, physical models...

I Automatic differentiation systems: Tensor Flow, Stan...

I Until recently, not much theoretical foundations, formal
proofs techniques
(this year: Pagani et al’s POPL 2020, Staton et al’s
FOSSACS 2020) . . .
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Forward AD in practice

Our reference (Forward Mode)

Jones et al’s: ”Efficient differentiable programming in a
functional array-processing language”
(only the functionnal core of their algorithm (no if, no
iteration, no array...))

The language

Simply typed ΛF
R with F ⊆ {differentiable functions}

A program transformation
D : {Programs} → {Programs}

I built by induction on the program structure.

I Dt embedds the information of both the original
program t and its derivatives.
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The transformation D (1)

Intuition

λx .t : R→ R ⇒ λdx .Dt : R× R→ R× R

meaning:
the original
program t

meaning: the
differential of t

Type of dual
numbers

General Typing invariant

λx .t : τ1 → τ2 ⇒ λdx1.Dt : Dτ1 → Dτ2

D on Types

DR = R× R

D(τ1 × τ2) = Dτ1 × Dτ2 D(τ1 → τ2) = Dτ1 → Dτ2
17 / 34
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The transformation D (2)

D on Terms

Dr = (r , 0) Dx = dx Dλx .t = λdx .Dt

D(f (t1, . . . , tn)) = (f (Dt1.1, . . . , Dtn.1),
n∑

i=1

∂xi f (Dt1.1, . . . , Dtn.1) ∗ Dti .2)

. . .

application
of the chain

rule
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Example (t = (λ(x , y). sin(x) + cos(y)))

Dt = λ(dx , dy).(sin(dx .1) + cos(dy .1),

cos(dx .1) ∗ dx .2− sin(dy .1) ∗ dy .2).

: (R× R)× (R× R)→ R× R

Question: How to recover the partial derivatives of
JtK : R× R→ R ?

Dual Expressions

dualx(y) =

{
(y , 1) if x = y

(y , 0) otherwise.
: R× R.

Example

λ(x , y).(Dt(dualx(x))(dualx(y)).2) : R× R→ R

≡ctx cos(x) ∗ 1− sin(y) ∗ 0 ≡ctx ∂JtK
∂x
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Correctness

Theorem
For any term t : Rn → R the term Dt : DRn → DR computes
the partial derivatives of t, in the sense that for any
k ∈ {1, . . . , n} we have

∂JtK
∂xk

= Jλ(x1, . . . , xn).(Dt(dualxk (x1)), . . . , (dualxk (xn))).2K
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Logical Relations for Automatic Differentiation
(1)

A binary relation:

RΘ
R ⊆ {programs} × {programs}

Reminder: Base case for continuity

Θ : x1 : R, . . . , xn : R
t ∈ FΘ

R ⇐⇒ (Θ ` t : R ∧ JΘ ` t : RK : Rn → R ∈ F)

Base Case for AD
Θ : x1 : R, . . . , xn : R; DΘ : dx1 : R× R, . . . , dxn : R× R.

tRΘ
R s ⇐⇒


Θ ` t : R ∧ DΘ ` s : R× R

∀y : R.JΘ ` s[dualy (x1)/dx1, . . . , dualy (xn)/dxn].1 : RK
= JΘ ` t : RK

∀y : R. JΘ ` s[dualy (x1)/dx1, . . . , dualy (xn)/dxn].2 : RK
= ∂y JΘ ` t : RK
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Logical Relations for Automatic Differentiation
(2)

Reminder: HO construction of FΘ for continuity

t ∈ FΘ
τ1→τ2

⇐⇒ (Θ ` t : τ1 → τ2 ∧ ∀s ∈ FΘ
τ1

. ts ∈ FΘ
τ2

)

→ construct for AD

t RΘ
τ1→τ2

s ⇐⇒

{
Θ ` t : τ1 → τ2 ∧ DΘ ` s : Dτ1 → Dτ2

∀p, q. p RΘ
τ1
q =⇒ tp RΘ

τ2
sq
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Proof of the Correctness Theorem by way of
Logical Relations

Lemma (Fundamental Lemma)

For all environments Γ, Θ and for any expression Γ, Θ ` t : τ ,
we have t RΓ,Θ

τ Dt.

From there, we can deduce the correctness theorem.
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Application of Open Logical Relations (2)

Local Continuity Properties in a
language with an if construct
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Continuity and the if-construct

Observation
The if-construct breaks global continuity

x

JtK(x)

if x < 0 then − x else x + 1

x

JtK(x)

if x < 0 then 1 else x + 1

Objective

Build a logical system to obtain continuity (local) guarantees
on programs.
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Containing Local Continuity Properties:
Chaudhuri et al’s logical system

Formal analysis of first-order programs

Judgments of the form:

b ` Cont(M,X )

I b: a boolean condition;

I X a set of variables

designed to guarantee: JMK : Rn → R is continuous along
the variable in X on all points that validates the condition b.
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Dealing with the if construct

We suppose three programs M1,M2,M3 with
bi ` Cont(Mi ,X );

Problem
Build a boolean condition c such that:

c ` Cont(if M1 then M2 else M3,X )

Chaudhuri et al’s Principle

I Ask b2 = b3: the domain of continuity of the branch is
the same;

I In every discontinuity points x of M1, M2(x) and M3(x)
must coincide: b2 ∧ ¬b1 ⇒ M2 ≡obs M3.

Then we can conclude:
b2 ` Cont(if M1 then M2 else M3,X ).
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Raphaëlle Crubillé
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Our Contribution

The Language

ΛF
R + if-construct

with F any set of functions Rn → R
(not necessarily continuous)

Our system

I A refinment type system (add to types logical
formulas φ... to specify domains of Rn);
An instance of refined type:

{α1 ∈ R}, . . . {αn ∈ R}ψ φ→ {α ∈ R}

I in the spirit of Chaudhuri et al’s for the FO fragment;

I designed to show: the program t : Rn → R is
continuous on {x ∈ Rn | x |= φ}
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Local Continuity on an Example

Example (M : R→ R build using HO components)

We suppose f1, f2 two primitives functions.

M[f1, f2] := λy .

(
λx .(x(y + 1) + x(y − 1))
(λz .if z > 0 then f1(z) else f2(z))

)

JMK : y ∈ R 7→


f1(y + 1) + f1(y − 1) when y − 1 > 0

f1(y + 1) + f2(y − 1) when y − 1 ≤ 0 < y + 1

f2(y + 1) + f2(y − 1)otherwise

In our system, we can show:

I M[f1, f2] is continuous on {x | x 6= 1 ∧ x 6= −1};
I M[f1, f2] is continuous everywhere as soon as

f1(1) = f2(1) and f1(−1) = f2(−1).
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Soundness of our Refined Type System

Theorem
Let t be any program such that:

x1 : {α1 ∈ R}, . . . , xn : {αn ∈ R}
θ θ′

`r t : {β ∈ R}.

Then it holds that:

I JtK(Dom(θ))α1,...,αn ⊆ Dom(θ′)β;

I JtK is sequentially continuous on Dom(θ))α1,...,αn .

Proof
By way of open logical relations.

30 / 34



On the Versatility
of Logical
Relations
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Conclusion

Contributions

I flexibility of Open Logical Relations to show
containement of first-order predicate or properties to an
higher-order language;

I A proof-of-concept for proving correctness of AD
algorithms in a functionnal setting

I A logical system to guarantee local continuity for
higher-order programs
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Conclusion

Future works

I Extension of our correctness proof for AD to backward
differentiation algorithm;

I Adapting our refinement type system to deal with the if
construct in the context of AD (checking
differentiability in critical points)

I Implement our refinement type system using standard
SMT-based approach (as done for standard refinement
types).
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Γ, x : τ ` x : τ Γ ` r : R

Γ ` t1 : R · · · Γ ` tn : R

Γ ` f (t1, . . . , tn) : R

Γ, x : τ1 ` t : τ2

Γ ` λx .t : τ1 → τ2

Γ ` s : τ1 → τ2 Γ ` t : τ1

Γ ` st : τ2

Γ ` t1 : τ Γ ` t2 : σ

Γ ` (t1, t2) : τ × σ
Γ ` t : τ1 × τ2

Γ ` t.i : τi
(i ∈ {1, 2})
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Our Rule for the if-then-else

Γ
θt (β=0∨β=1)

`r t : {β ∈ R}

Γ
θ(t,0) (β=0)

`r t : {β ∈ R}

Γ
θ(t,1) (β=1)

`r t : {β ∈ R}

Γ
θs
`r s : T

Γ
θp
`r p : T

c 1 + 2

Γ
θ
`r if t then s else p : T

The side-conditions are given as:

1. |= θ ⇒(
(θs ∨ θp) ∧ (θ(t,1) ∨ θp) ∧ (θ(t,0) ∨ θs) ∧ (θt ∨ (θs ∧ θp))

)
.

2. ∀ logical assignment σ compatible with GΓ ,σ |=
θ ∧ ¬θt implies HΓ ` sσ GΓ ≡ctx pσ GΓ .
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