
Metric Reasoning About λ-Terms:

The Affine Case

(Long Version)

Raphaëlle Crubillé Ugo Dal Lago

October 22, 2018

Abstract

Terms of Church’s λ-calculus can be considered equivalent along many different definitions,
but context equivalence is certainly the most direct and universally accepted one. If the un-
derlying calculus becomes probabilistic, however, equivalence is too discriminating: terms
which have totally unrelated behaviours are treated the same as terms which behave very
similarly. We study the problem of evaluating the distance between affine λ-terms. The most
natural definition for it, namely a natural generalisation of context equivalence, is shown to
be characterised by a notion of trace distance, and to be bounded from above by a coinduc-
tively defined distance based on the Kantorovich metric on distributions. A different, again
fully-abstract, tuple-based notion of trace distance is shown to be able to handle nontrivial
examples.

1 Introduction

Probabilistic models are formidable tools when abstracting the behaviour of complicated, in-
tractable systems by simpler ones, at the price of introducing uncertainty. But there is more:
randomness can be seen as a way to compute; in modern cryptography, as an example, having
access to a source of uniform randomness is essential to achieve security in an asymmetric set-
ting [14]. Other domains where probabilistic models play a key role include machine learning [24],
robotics [27], and linguistics [21].

Probabilistic models of computation have been studied not only directly, but also through
concrete or abstract programming languages, which are most often extensions of their deterministic
siblings. Among the many ways probabilistic choice can be captured in programming, the simplest
one consists in endowing the language of programs with an operator modelling the flipping of a
fair coin. This renders program evaluation a probabilistic process, and under mild assumptions
the language becomes universal for probabilistic computation. Particularly fruitful in this sense
has been the line of work on the functional paradigm, both at a theoretical [17, 26, 23] and at a
more practical level [15].

In presence of higher-order functions, program equivalence can be captured by so-called con-
text equivalence: two programs M and N are considered equivalent if they behave the same no
matter how the environment interacts with them: for every context C, it holds that Obs(C[M]) =
Obs(C[N]). However, this definition has the drawback of being based on an universal quantification
over all contexts: showing that two programs are equivalent, requires considering their interaction
with every possible context. The problem of giving handier characterisations of context equivalence
can be approached in many different ways. As an example, coinductive methodologies for pro-
gram equivalence have been studied thoroughly in deterministic [1, 25] and non-deterministic [19]
computation, with new and exciting results appearing recently also for probabilistic languages:
applicative bisimilarity, a coinductively defined notion of equivalence for functional programs, has
been shown to be sound, and sometime even fully abstract, for probabilistic λ-calculi [6, 4].

1

In a probabilistic setting, however, equivalences are too strong if defined as above. Indeed, two
programs are equivalent if their probabilistic behaviour is exactly the same (in every context). The
actual value of probabilities in a probabilistic model often comes from statistical measurements,
and should be considered more as an approximation to the actual probability law. Consequently,
we would like to compare programs by appropriately reflecting small variations in them. Another
scenario in which a richer, more informative way of comparing programs is needed is cryptography,
where a central notion of equivalence, called computational indistinguishability [13] is indeed based
on statistical distance rather than equality: the adversary can win the game, but with a small
probability. Summing up, equivalences should be refined into metrics, and this is the path we will
follow in this paper.

In probabilistic λ-calculi, the notion of observation Obs(·) is quantitative: it is either the
probability of convergence to a certain observable base value (e.g. the empty string), or the
probability of convergence tout court. One can then easily define a notion of context distance as
the maximal distance contexts can achieve when separating two terms:

δctx(M,N) = sup
C
|Obs(C[M])−Obs(C[N])|.

This looks very close to computational indistinguishability, except for the absence of a security
parameter: a scheme is secure if the advantage of any adversary in a given game (e.g., consisting
in distinguishing between the case where the scheme is used, and the case where it is replaced by
a truly random process) is “small” (e.g., negligible). Again, however, we find ourselves in front of
a definition which risks to be useless in proofs, given that all contexts must be taken into account.
But how difficult is evaluating the distance between concrete higher-order terms? Are there ways
to alleviate the burden of dealing with all contexts, like for equivalences? These are the questions
we address in this paper, and which have to the authors’ knowledge not been investigated before.

As we will discuss in Section 2 below, finding handier characterisations of the context distance
poses challenges which are simply different (and often harder) than the ones encountered in context
equivalence. In particular, the context distance tends to trivialise and, perhaps worse, naively
applying the natural generalisation of techniques known for equivalence is bound to lead to unsound
methodologies. Indeed, one immediately realises that the number of times contexts access their
argument is a crucial parameter, which must necessarily be dealt with. This is the reason why we
work with an affine λ-calculus in this paper: this is a necessary first step, but also points to the
right way to tame the general, non-linear case.

An extended version of this paper with more details is available [5].

Contributions

We introduce in this paper three distinct notions of distance for terms in an untyped, probabilistic,
and affine λ-calculus. The first one is a notion of trace distance, in which terms are faced with linear
tests, i.e. sequences of arguments. The distance between two terms is then defined as the greatest
separation any linear test achieves. The first results of this paper are the non-expansiveness of the
trace distance, which implies (given that any linear test can easily be implemented by an affine
context) that the trace and context distances coincide. This is the topic of Section 4 below.

Section 5, instead, focuses on another notion of distance, which is coinductively defined fol-
lowing the well-known Kantorovich metric [18] for distributions of states in any labelled Markov
chain (LMC in the following), and that we dub the bisimulation distance. This second notion of
a distance is not only smaller than the trace distance, which is well expected, but non-expansive
itself. This is proved by a variation on the Howe’s method [16], a well-known technique for proving
that bisimilarity is a congruence in an higher-order setting, and which has never been used for
metrics before. On the other hand, the bisimulation distance does not coincide with the context
distance, a fact that we do not only prove by giving a counterexample, but that we justify by
relying on a test-based characterisation of the bisimulation distance known from the literature.

For the sake of simplicity, the trace and bisimulation distances are analysed on a purely applica-
tive λ-calculus, keeping in mind that pairs could be very easily handled, and can even be encoded

2

M = true N = true⊕ false

t̂rue f̂alse

eval eval

1
1
2

1
2

true false

Figure 1: M and N as states of a LMC

in the applicative fragment, as discussed in Section 4.4. The presence of pairs, however, allows
us to form very interesting examples of distance problems, one of which will drive us throughout
the paper but unfortunately turns out hard to handle neither by the trace distance nor by the
bisimulation distance. This is the starting point for the third notion of distance introduced in this
paper, which is the subject of Section 6, and which we call the tuple distance. Our third notion
of distance can be proved to coincide with the trace distance, and thus with the context distance.
But this is not the end of the story: in the tuple distance, not a single but many terms are com-
pared, and this makes the distance between concrete terms much easier to evaluate: interaction is
somehow internalised. In particular, our running example can be handled quite easily. The way
the tuple distance is defined makes it adaptable to non-affine calculi, a topic which is outside the
scope of this paper, but which we briefly discuss in Section 6.3.

Related Work

This is definitely not the first work on metrics for probabilistic systems: notions of coinductively
defined metrics for LMCs, as an example, have been extensively studied (e.g. [10, 9, 28]). There
has been, to our knowledge, not so many investigations on the meaning of metrics for concrete
programming languages [12], and almost nothing on metric for higher-order languages.

If the key property notions of equivalences are required to satisfy consists in being congruences,
the corresponding property for metrics has traditionally been taken as non-expansiveness. Indeed,
many results from the literature (e.g. [10, 22]) have precisely the form of non-expansiveness results
for metrics defined in various forms. The underlying language, however, invariably take the form
of a process algebra without any higher-order feature. The work of Gebler, Tini, and co-authors
shows that one could go beyond non-expansiveness and towards uniform continuity [12] but, again,
higher-order functions remain out of scope.

Notions of equivalence for various forms of probabilistic λ-calculi have also been extensively
studied, starting from the pioneering work by Plotkin and Jones [17], down to recent results
on probabilistic applicative bisimulation [6, 4], logical relations [3], and probabilistic coherent
spaces [7, 11]. None of the works above, however, go beyond equivalences and deals with notions
of distances between terms.

2 The Anatomy of a Distance

In this section, we describe the difficulties one encounters when trying to characterise the context
distance with either bisimulation or trace metrics.

Suppose we have two terms M and N of boolean type written in a probabilistic λ-calculus. As
such, M and N do not evaluate to a value in the domain of booleans but to a distribution over
the same domain. M evaluates to the distribution assigning true probability 1, while N evaluates
to the uniform distribution over booleans, (i.e. the distribution which attributes probability 1

2 to
both true and false). Figure 1 depicts the relevant fragment of a LMC, whose induced notion of
probabilistic bisimilarity has been proved to be sound for context equivalence [4]. M and N are

not bisimilar. Indeed, t̂rue and f̂alse are trivially not bisimilar, while M and N go to equivalent

3

states with different probabilities. The two terms are non-equivalent also contextually. But what
should be the distance between M and N?

For the moment, let us forget about the context distance, and concentrate on the notions of
distance for LMCs we mentioned in Section 1. In all cases we are aware of, we obtain that M
and N are at distance 1

2 . As an example, if we consider a trace metric, we have to compare the
success probability of linear tests, starting from M and N . More precisely, the tests of interest
with respect to these two terms are:

t := eval; s := eval · true; r := eval · false.

Since neither M nor N has a non-zero divergence probability, they both pass the test t with
probability 1. The success probability of the test s corresponds to the probability of evaluating
to true: it is 1 for M and 1

2 for N . Similarly, the success probability of r corresponds to the
probability to obtain false after evaluation: it is 0 for M and 1

2 for N . So we can see that the
maximal separation linear tests can obtain is 1

2 . The situation is quite similar for bisimulation
metrics [10], which attribute distance 1

2 to M and N .
It is easy, however, to find a family of contexts {Cn}n∈N such that Cn[M] evaluates to true with

probability 1, and Cn[N] evaluates to false with probability 1 − 1
2n : define Cn as a context that

copies its argument n times, returning false if at least one of the n copies evaluates to false, and
otherwise returns true. As a consequence, the context distance between M and N is 1. In fact, this
reasoning can be extended to any pair of programs which are not equivalent but whose probability
of convergence is 1: out of a context which separates them of ε > 0, with ε very small, we can
construct a context that separates them of 1 performing some statistical reasoning. The situation
is more complicated if we take the probability of convergence as an observable: we cannot always
construct contexts that discriminate terms based on their probability of convergence, although
something can be done if the terms’ probabilities of convergence are different but close to 1. The
context metric, in other words, risks to be not continuous and close to trivial if contexts are
too powerful. What the example above shows, however, is something even worse: if contexts
are allowed to copy their arguments, then any metric defined upon the usual presentation of
probabilistic λ-calculus as an LMC (a fragment of which is depicted in Figure 1) is bound to be
unsound w.r.t. the context metric.

Whether bisimulation metrics are sound, how close they are to the context distance, and
whether they are useful in relieving the burden of evaluating it, are however open and interesting
questions even in absence of the copying capability, i.e., when the underlying language is affine.
This is the main reason why we focus in this work on such a λ-calculus, whose expressive power is
limited (although definitely non-trivial [20]) but which is anyway higher-order. We discover this
way an elegant and deep theory in which trace and bisimulation metrics are indeed sound, At the
end of this paper, some hints will be given about how the case of the untyped λ-calculus can be
handled, a problem which we leave for future work.

Evaluating the context distance between affine terms is already an interesting and nontrivial
problem. Consider, as an example, a sequence of terms {Mn}n∈N defined inductively as follows
(where Ω stands for a term with zero probability of converging):

M0 = 〈λx.Ω, λx.Ω〉; Mn+1 = 〈λx.Mn, λx.Ω〉.

M0 is the pair whose components are both equal to λx.Ω, and Mn+1 is defined as a pair whose first
component is the function which returns Mn whatever its argument is, and the second component
is again λx.Ω. We are now going to define another sequence of terms {Nn}n∈N, which can be seen
as a noisy variation on {Mn}n∈N. More precisely, N0 is the same as M0, and for each n ∈ N, Nn+1

is constructed similarly to Mn+1, but adding some negligible noise in both components:

N0 = 〈λx.Ω, λx.Ω〉;

Nn+1 = 〈λx.Nn ⊕
1

2n+1 Ω, λx.Ω⊕
1

2n+1 I〉.

(I stands for the identity: λx.x, while the term L ⊕p K has the same behaviour as L with
probability (1 − p), and the same behaviour as K with probability p.) We would like to study

4

how the distance between Mn and Nn evolves when n tends to infinity: do the little differences
we apply at each step n accumulate, and how can we express this accumulation quantitatively?

Intuitively, it is easy for the environment to separate Mn and Nn of 1
2n : it is enough to consider

a context C which simply takes the second component of the pair, passes any argument to it, and
evaluates it: the convergence probability of C[Mn] is 0, while the convergence probability of C[Nn]
is 1

2n . But the environment can also decide to take the first component of the pair, in order to use
the fact that Mn−1 and Nn−1 can be distinguished: more precisely, let us suppose that we have a
context C which separates Mn−1 and Nn−1. Then we can construct a context D which takes the
first element of the pair, passes any argument to it, tries to evaluate it, and if it succeeds, gives the
result as an argument to C. We would like to express the supremum of the separation that such a
context can obtain as a function of the distance between Mn−1 and Nn−1. Unfortunately, this is
not so simple: if C is such that the convergence probability of C[Mn−1] is ε and the convergence
probability of C[Nn−1] is ι, we can see that the convergence probability of D[Mn] is ε, whereas the
convergence probability of D[Nn] is (ι · (1− 1

2n)). But it is not possible to express |ε− ι · (1− 1
2n)|

as a function of |ε− ι| and n: intuitively, the separation that the context D can achieve depends
not only on the separation that the context C can achieve, but also on how C achieves it. And
moreover, the environment may of course decide to use the two components of the pair, and to
make them interact in an arbitrary way. Summing up, although the mechanism of construction
of these terms seems to be locally easy to measure, it is complicated to have any idea about how
the distance between them evolves when n tends to infinity.

3 Preliminaries

In this section, an affine and probabilistic λ-calculus, which is the object of study of this paper,
will be introduced formally, together with a notion of context distance for it.

3.1 An Affine, Untyped, Probabilistic λ-Calculus

We endow the λ-calculus with a probabilistic operator ⊕, which corresponds to the possibility for
the program to choose one between two arguments, each with the same probability. Terms are
expressions generated by the following grammar:

M ::= x | λx.M | MM | M ⊕M | Ω,

where Ω models divergence1, and x ranges over a countable set V of variables.
The class of affine terms, which model functions using their arguments at most once, can be

isolated by way of a formal system, whose judgements are in the form Γ ` M (where Γ is any
finite set of variables) and whose rules are the following (where Γ,∆ stands for the union of two
disjoints contexts):

Γ, x ` x
Γ, x `M
Γ ` λx.M

Γ `M ∆ ` N
Γ,∆ `MN

Γ `M Γ ` N
Γ `M ⊕N Γ ` Ω

A program is a term such that ∅ ` M , and P is the set of all such terms. We will call them
closed terms. We say that a program is a value if it is of the form λx.M , and V is the set of such
programs. The semantics of the just defined calculus is expressed as a binary relation ⇓ between
programs and value subdistributions (or simply value distributions), i.e. functions from values to
real numbers whose sum is smaller or equal to 1. The relation ⇓ is inductively defined by the
following rules:

Ω ⇓ ∅
V a value

V ⇓ {V 1}
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2D + 1

2E

1since we only consider affine terms, we cannot encode divergence by the usual constructions of λ-calculus

5

M ⇓ D N ⇓ E
{L{V/x} ⇓ FL,V }λx.L∈S(D),V ∈S(E)

MN ⇓
∑

D(λx.L) · E (V) ·FL,V

where S(D) stands for the support of the distribution D . The divergent program Ω, as expected,
evaluates to the empty value distribution ∅ which assigns 0 to any value. The expression {V 1}
stands for the Dirac’s value distribution on V ; more generally the expression {V p1

1 , . . . , V pnn }
indicates the value distribution assigning probability pi to each Vi (and 0 to any other value).

For every program M , there exists precisely one value distribution D such that M ⇓ D , that we
note JMK. This holds only because we restrict ourselves to affine terms. Moreover, JMK is always
a finite distribution. The rule for application expresses the fact that the semantics is call-by-value:
the argument is evaluated before being passed to the function. There is no special reason why we
adopt call-by-value here, and all we are going to say also holds for (weak) call-by-name evaluation.

In some circumstances, we would need to have a more local view of how the programs behave.
For these reason, we define an equivalent notion of small-steps semantics, which allows us to reason
about every small execution step. We define first a one-step semantics → between programs and
distribution over programs:

Ω→ ∅ M ⊕N → 1
2 · {M

1}+ 1
2 · {N

1}

(λx.M)V → {M{V/x}1}
M → D

MN →
∑

D(L) · {LN1}
N → D

V N →
∑

D(L) · {V L1}
Then we use it to define a small step semantics⇒, which is a relation between programs and value
distributions, and corresponds to do as much as possible steps of →. The rules are the following:

V ⇒ {V 1}
M → D (N ⇒ EN)N∈S(D)

M ⇒
∑

D(N) · EN

Big-step and small-steps semantics are equivalent: for every program M , there exists a unique
distribution D such that M ⇒ D , and moreover D = JMK.

3.2 Context Distance

We now want to define a notion of observation for programs which somehow measures the conver-
gence probability of a program. We will do that following the previous literature on this subject.
For any distribution D over a set A, its sum

∑
a∈A D(a) is indicated as

∑
D and is said to be the

weight of D . The convergence probability of a term M , that we note Pcv(M), is simply
∑

JMK,
i.e., the weight of its semantics. For instance, the convergence probability of Ω is zero.

The environment, as usual, is modelled by the notion of a context, which is nothing more than
a term with a single occurrence of the hole [·]. They are generated by the following grammar:

C ::= [·] | M | λx.C | CM | MC | C ⊕ C.
Affine contexts can be identified by a formal system akin to the one for terms. We note as C[M]
the program obtained by replacing [·] by the closed term M in C. The interaction of a program
M with a context C is the execution of the program C[M].

We now consider three different ways of comparing programs, based on their behaviour when
interacting with the environment: a preorder ≤ctx , an equivalence relation ≡ctx , and a map
δctx:

Definition 1 (Context Equivalence, Context Distance) Let M and N be two programs. Then
we write that M ≤ctx N if and only if for every context C, it holds that Pcv(C[M]) ≤ Pcv(C[N]).
If M ≤ctx N and N ≤ctx M , then we say that the two terms are context equivalent, and we write
M ≡ctx N . With the same hypotheses, we say the context distance between M and N is the real
number δctx(M,N) defined as supC |Pcv(C[M])− Pcv(C[N])|.

6

Please observe that, following [8], we only compare programs and not arbitrary terms. This is
anyway harmless in an affine setting.

Example 1 Let I be the identity λx.x. I and Ω are as far as two programs can be: δctx(I,Ω) = 1.
To prove that, finding a context which always converges for one of the terms, and always diverges
for the other one, suffices. We can take C = [·], and we have that Pcv(C[I]) = 1 and Pcv(C[Ω]) = 0.
Of course, I and Ω are not context equivalent. Throwing in probabilistic choice can complicate
matters a bit. Consider the two terms I ⊕ Ω and I. One can easily prove that δctx(I ⊕ Ω, I) ≥ 1

2 :
just consider C = [·]. However, showing that the above inequality is in fact an equality, requires
showing that there cannot exist any context that separates more, which is possible, but definitely
harder. This will be shown in the next section, using a trace-based characterisation of context
distance.

3.3 On Pseudometrics

Which properties does the context distance satisfy, and which structure it then gives to the set of
programs? This section answers these questions, and prepares the ground for the sequel by fixing
some terminology.

Definition 2 (Pseudometrics) Let S be a set. A premetric on S is any function µ : S → S
such that 0 ≤ µ(s, t) ≤ 1 and µ(s, s) = 0. A pseudometric on S is any premetric such that
for every s, t, u ∈ S, it holds that µ(s, t) = µ(t, s) and µ(s, t) ≤ µ(s, u) + µ(u, t). The set of all
pseudometrics on S is indicated with ∆(S).

Please observe that pseudometrics are not metrics in the usual sense, since µ(s, t) = 0 does not
necessarily imply that s = t. If we have a pseudometric µ, we can construct an equivalence
relation by considering the kernel of µ, that is the set of those pairs (s, t) such that µ(s, t) = 0. It
is easy to prove that the context distance is indeed a pseudometric, and that its kernel is context
equivalence. We would now want to define a preorder ≤metr on pseudometrics in such a way that
if µ ≤metr ρ, then the kernel of µ is included in the kernel of ρ. The natural choice, then, is to
take the following definition, which is the reverse of the pointwise order on [0, 1]:

Definition 3 (Pseudometric Ordering) Let S be any set, and let µ and ρ be two metrics
in ∆(S). Then we stipulate that µ ≤metr ρ if and only if, for every s, t ∈ S we have that
ρ(s, t) ≤ µ(s, t).

Lemma 1 For any set S, (∆(S), · ≤metr ·) is a complete lattice.

But when, precisely, can a pseudometric on programs be considered as a sound notion of distance?
First of all, we would like it to put two programs at least as far as the difference between their
convergence probabilities, since this is precisely our notion of observation:

Definition 4 (Adequacy) Let µ be a pseudometric on the set of programs. Then µ is an ade-
quate pseudometric if for any programs M and N , we have that |

∑
JMK−

∑
JNK| ≤ µ(M,N).

Secondly, we are interested in how programs behave when interacting with the environment.
Especially, if we have two terms M and N at a given distance ε, and we put them in an environment
C, we would like a pseudometric µ to give us some information about the distance between C[M]
and C[N]. This is the idea behind the following, standard, definition:

Definition 5 (Non-Expansiveness) Let µ be a pseudometric on programs. We say µ is non-
expansive if for every pair of programs M and N and for every context C, we have that µ(C[M], C[N]) ≤
µ(M,N).

Non-expansiveness is the natural generalisation of the usual notion of congruence: if R is an
equivalence relation on program, it is congruent if for every context C, if M RN , then C[M]R C[N].
By construction, δctx is a non-expansive pseudometric. We can also adapt the notion of soundness
to pseudometric; µ is said to be a sound pseudometric on programs if µ ≤metr δctx. Clearly, any
adequate and non-expansive pseudometric is sound. In the rest of this paper, we will only deal
with pseudometrics, but for the sake of simplicity we will refer to them simply as metrics.

7

4 The Trace Distance

The first notion of metric we study is based on traces, i.e., linear tests. This is handier than the
context distance, since contexts are replaced by objects with a simpler structure.

4.1 Definition

A trace s is a sequence in the form @V1 · · · ·@Vn, where V1, · · ·Vn are values, and we note T r the
set of traces. In other words, traces are generated by the following grammar:

s ::= ε | @V · s

We define the probability that a program accepts a trace inductively on the length of the trace,
as follows:

Pr(λx.M, ε) = 1;

Pr(λx.M,@V · s) = Pr(M{V/x}, s);

Pr(M, s) =
∑
V

JMK(V) · Pr(V, s) if M 6∈ V.

Please observe that the probability that a term M accepts a trace s = @V1 · · ·@Vn is the proba-
bility of convergence of MV1 · · ·Vn. We are now going to define a metric, based on the probability
that programs accept arbitrary traces:

Definition 6 Let M,N be two programs. Then we define the trace distance between them as
δtr(M,N) = sups|Pr(M, s) − Pr(N, s)|. One can then define trace equivalence and the trace
preorder, in the expected way.

Please observe that δtr is a pseudometric on programs in the sense of Definition 2, and that it is
an adequate one. The kernel of δtr is nothing more than trace equivalence.

Example 2 δtr(I,Ω) = 1: we have to find a trace that separates them as much. It is enough
to consider the empty trace: it holds that Pr(ε, I) = 1, and Pr(ε,Ω) = 0. The trace distance
δtr(I ⊕Ω, I) between I ⊕Ω and I is 1

2 . Showing that it is greater than 1
2 is easy: it is sufficient to

consider the empty trace. The other inequality, requires evaluating, for any trace s, the probability
of accepting it. This is however much easier than dealing with all contexts, because we can now
control the structure of the overall program we obtain: for any trace s = @V1 · · ·@Vn, we can see
that: Pr(I ⊕ Ω, s) = 1

2 ·
∑

JV1 · · ·VnK, and Pr(I, s) =
∑

JV1 · · ·VnK. The difference (in absolute
value) between Pr(I ⊕ Ω, s) and Pr(I, s), then, cannot be greater than 1

2 .

The trace distance and the context distance indeed coincide, as well as the trace and context
preorder, and the trace and context equivalence. In the rest of this section, we will give the details
of the proof for the pseudometric case, but the proof is similar for ≡ctx and ≤ctx . It is easy to
realise that the context distance is a lower bound on the trace distance, since any trace @V1 · · ·@Vn
can be seen as the context [·]V1 · · ·Vn.

Lemma 2 δctx ≤ δtr

Proof. For any trace s = @V1 · · ·@Vn which separates M and N of ε, we can easily construct a
context which separates them of the same quantity: just take C = [·]V1 · · ·Vn. �

4.2 Non-Expansiveness

Are there contexts that can separate strictly more than traces? In order to show that it is not the
case, it is enough to show that δtr is non-expansive:

Theorem 1 Let be M and N two programs, and let be C a context. Then δtr(C[M], C[N]) ≤
δtr(M,N).

8

Since δtr is adequate, we can conclude that trace metric and context metric actually coincide:

Theorem 2 δctx = δtr.

The rest of this section is devoted to an outline of the proof of Theorem 1. The proof we give
here is roughly inspired by the proof of congruence of trace equivalence for a non-deterministic
λ-calculus [8]. The overall structure of the proof is the following: we first express the capacity
of a program to do a trace by means of a labelled transition system (LTS in the following) Ltr

whose states are distributions over programs. Then we consider another LTS Ltr
C×P, where the

states are distributions over pairs of contexts and programs that intuitively models the execution
of C[M], but keeps the evolution of C and M apart.

4.2.1 The LTS Ltr

The first LTS, called Ltr, has distributions over programs as states, and traces as actions. We
indicate with

·⇒ the transition relation associated to Ltr. We’re in fact going to define it on
top of an auxilliary labelled relation

·→. Intuitively, the idea behind
·→ is to consider a term as a

process who can make actions. There are two kinds of possible actions: an internal action τ , which
corresponds to the internal reduction of the term, and external actions, which corresponds to the
application of an argument V to the term. More precisely, this labelled relation

·→ is defined as a
subset of the set Distr (P)×A×Distr (P) , where the set A is defined as:

Definition 7 We define the set of actions A by:

A = {τ}
⋃
{@V | V value } .

Intuitively, a τ -step corresponds to an internal computation step for any term in the support of the
distribution, while a @V -step corresponds to an interaction with the environment, which provides
V as an argument.

Definition 8 We define a labelled transition relation
·→⊆ Distr (P)×A×Distr (P), by the rules

of Figure 2. (We write D u E for D + E when we want to insist on D and E to have disjoint
supports).

M → E

D u α · {M1} τ→ D + α · E
D value distribution

D
@V→
∑
M D(λx.M) · {M{V/x}1}

Figure 2: One-step Trace Relations on Program Distributions.

The relation
·⇒ is defined as the accumulation of several steps of

·→. We define now the LTS Ltr.

Definition 9 We define the LTS Ltr as:

• Its set of states is Distr (P)

• Its set of labels is the set of traces T r.

• Its transition relation
·⇒ is defined by by the rules of Figure 3

Please observe that these relations are not probabilistic. The relation
τ→ is non-deterministic,

since at each step we can decide which term of the distribution we want to reduce. However,
τ→

is strongly normalising and confluent.

Lemma 3 The relation:
τ→ is strongly normalising

9

D value distribution

D
ε⇒ D

D
τ→ E E

t⇒ F

D
t⇒ F

D
@V→ E E

t⇒ F

D
@V ·t⇒ F

Figure 3: Small-step Trace Relations on Program Distributions.

Proof. • We show first that it is terminating: for a term M , we define a quantity |M | ∈ N
which corresponds to the size of the term:

| Ω | = 0; | x | = 1; | λx.M | = 1 + |M |;

|MN | = |M |+ | N |; |M ⊕N | = 1 + max{|M |, | N |};

Since our λ-calculus is linear, |M | decreases during the execution for every program M .
More precisely: If M → D , then for every N ∈ S(E), | N | < |M |. (It is easily checked by
observing the rules of →).
Moreover, if M → D , then the cardinal of S(D) is at most 2. So, if for a distribution D we
note:

| D | =
∑

(M)∈S(D)

3|M |

, we can see that: for every D , if D
τ→ E , we have that | E | < | D |.

• Moreover, let D be a distribution over program, and let be E such that D
τn

→ E , and
E is a normal form for

τ→. Then we are going to show by induction over n ∈ N that
E =

∑
M∈S(D) D(M) · JMK.

– if n = 0, then D = E , and moreover D is a distribution over values. So the result holds.

– if n > 0, it is a consequence of rules of Figure 2.

�

Moreover, we can show that
·⇒ is in fact deterministic. That is, we have the following Lemma:

Lemma 4 For every trace s, for every D , there exist an only one E such that D
s⇒ E .

The interest of the relation
·⇒ is that it gives an alternate formulation for the probability that a

program succeeds in doing a trace:

Lemma 5 Let be M a program, s a trace, and let be E the distribution such that {M1} s⇒ E .
Then Pr(s,M) =

∑
E .

In fact, the labelled transition system Ltr allows us to extend the notion of probability of success
for a trace to the case where we start not from a program, but from a probability distribution
over program:

Pr(s,D) =
∑

E when D
s⇒ E

In the same way we extend the preorder · ≤tr ·, the equivalence relation · ≡tr ·, and the metric δtr

to distributions. We can now use the relation
·⇒ to give an equivalent formulation of Theorem 1:

if M and N are such that δtr(M,N) ≤ ε, then for every trace s, and context C, if {C[M]
1} s⇒ D

and {C[N]
1} s⇒ E , then it holds that |

∑
D −

∑
E | ≤ ε. This statement, however, cannot be

proved directly, yet, because the way C and the argument terms interact is lost.

10

4.2.2 The LTS Ltr
C×P

It is then time to introduce our second LTS, called Ltr
C×P, which will allow us to relate {C[M]

1} ·⇒ ·
to the behaviour of M : we want to talk about the evolution of a system consisting of the program
M and the environment C, while keeping the system and the environment as separate as possible.
C×P is the set of pairs of the form (C,M), where C is a context and M is a program. The states
of Ltr

C×P are distributions over C×P, and the labels of Ltr
C×P are traces. The transition relation

of Ltr
C×P corresponds to the transition relation of Ltr, where we keep the information about what

part of the whole system is the program, and what part is the environment interacting with it.
We’ll use the following notation, which will be useful in the formal definition of Ltr

C×P: If N is a
term, D a distribution over C × P, we define D · N and N · D as the distributions over C × P
given by:

D ·N =
∑

(C,M)∈S(D)

D(C,M) · {(CN,M)
1}

N ·D =
∑

(C,M)∈S(D)

D(C,M) · {(NC,M)
1}

And if C is a context, M a term, and D a distribution over P, we define (CD ,M) and (DC,M) as
the distributions over C×P given by:

(CD ,M) =
∑

N∈S(D)

D(M{(CN,M)
1})

(DC,M) =
∑

N∈S(D)

D(M{(NC,M)
1})

If (C,M) ∈ C×P is such that C[M] is a value, we say by abuse of notation that (C,M) is a value.
If D is a distribution over C × P such that every (C,M) ∈ S(D) is a value, we say that D is a
value distribution.

Definition 10 We define Ltr
C×P as the labelled transition system such that:

• its set of states is the set of probability distributions over C×P.

• its set of labels is the set of traces.

• its transition relations
·⇒C×P is defined by the rules of Figure 4. The definition uses an

auxiliary one-step transition relation D
a→C×P E , where a ∈ A, and D , E are distributions

over C×P.

Lemma 6 The relation
τ→ on distributions over C×P is strongly normalising, and normal forms

of
τ→ are value distributions.

Proof. The proof is exactly the same that for the relation
τ→ for distribution over programs. We

extend the definition of | · | to distribution over C × P, by: | D | =
∑

(C,M)∈S(D) 3|C[M]|, and we
do the same reasoning. �

For D a distribution over C × P, we note D? the normal form of D for the relation
τ→. Please

observe that Lemma 6 implies that for any distribution D , there exists only one distribution E
such that D

ε⇒ E , and moreover E = D?. The trace semantics for distributions over C×P allows
us to extend the notions of trace equivalence, trace preorder and trace metric on distributions over
C×P in a natural way.

11

N → E

D u p · {(N,M)1} τ→C×P D + p · (E ,M) p · {(λx.N,M)1} @V→C×P p · (N{V/x},M)

{(C,M)1} τ→C×P E

D u p · {(CN,M)1} τ→C×P D + p · (E ·N)

C[M] is a value N → E

D u p · {(CN,M)1} τ→C×P D + p · (CE ,M)

N → E

D u p · {(NC,M)1} τ→C×P D + p · (E C,M)

{(C,M)1} τ→C×P E

D u p · {(V C,M)1} τ→C×P D + p · (V E ,M)

M → E

D u p · {[·],M1} τ→C×P D + p · ([·], E)

D u p · {[·]V, λx.N1} τ→C×P D + p · {[·], N{V/x}1}
C[M] value

D u p · {(λx.N)C,M1} τ→C×P D + p · {N{C/x},M1}

p · {λx.C,M1} @V→C×P p · {(C{V/x},M)1} p · {([·], λx.M)1} @V→C×P p · {([·],M{V/x})1}

Di
@V→C×P Ei

·∑
i Di

@V→C×P
∑
i Ei

D value distribution

D
ε⇒C×P D

D
τ→C×P E E

t⇒C×P F

D
t⇒C×P F

D
@V→C×P E E

t⇒C×P F

D
V ·t⇒C×P F

Figure 4: small-step trace relations on distributions over C×P

4.2.3 Relating Ltr and Ltr
C×P

Intuitively, considering a semantics for distributions over C×P allows us to separate the part of
the semantics which talks about the program, and the part which talks about the context. We
would like to obtain the trace semantics for C[M], just by looking at the semantics of (C,M). We
are going to express this idea by relating the two trace semantics.

Lemma 7 Let be M a closed term, C a context and s a trace. Let be D and E such that {C[M]
1} s⇒

D , and {(C,M)
1} s⇒C×P E Then

∑
D =

∑
E .

Proof. The proof of Lemma 7 is relatively technical, and is based on three auxilliary lemmas :
Lemma 8, and Lemma 9. If D is a distribution over C×P, we call F(D) the distribution obtained
by filling each context by its associated term. To express this idea more formally, we define an
operator F() on distributions over C×P, which transforms every distribution in its corresponding
distribution over terms.

F(D) =
∑
C,M

D((C,M)) · {C[M]
1}.

We can now express the correspondence between the trace semantics on distributions over pro-
grams, and the trace semantics on distributions over C×P, by the following lemma.

Lemma 8 Let D ,E be distributions over C×P. If D
s⇒C×P E , then we have that: F(D)

s⇒ F(E)

But we would like to have some information in the other directions too: if we have the trace
semantics of the term C[M], is it possible to deduce something about the trace semantics of
(C,M) ? The following lemma give a positive answer:

Lemma 9 Let D be a distribution over C×P such that F(D)
t⇒ F . Let be G such that D

t⇒C×P
G . Then F = F(G).

Proof. We need first to show an auxiliary lemma, in order to express the correspondence between
the one-step relation on distributions over programs, and the one-step relation on distributions
over C×P.

12

Lemma 10 Let be C a context, and N a term. Let be D such that C[N]→ D . Then there exists

E such that: {(C, N)
1} τ→C×P E , and F(E) = D .

Using this lemma we are now going to show Lemma 9. The proof is by induction on the derivation

of F(D)
t⇒ F :

• The basic case is the case where F(D) is a value distribution (and consequently a normal

form for · τ→ ·), and where we are interested in the empty trace. The the derivation tree of

F(D)
t⇒ F is of the form:

F(D) value distribution

F(D)
ε⇒ F(D)

Then F(D) is a value distribution. By definition of values for distribution over C × P, it

means that D is a value distribution too. And so we can observe that D
ε⇒C×P D , and the

result holds.

• The first induction case is the case we don’t start from a value distribution. Then the
derivation tree of F(D)

t⇒ F is of the form:

F(D)
τ→ G G

t⇒ F

F(D)
t⇒ F

The only possible way to have obtained: F(D)
τ→ G is to have used a derivation of the form:

M → I

F(D) = H u p · {(M)
1} τ→ G = H + p · (I)

Since F(D) = H u p · {(M)
1}, D = J u p ·K , with F(J) = H and F(K) = {M1}.

So for any (C, N) ∈ S(K), we have that C[N] → I . By Lemma 10, there exist LC,N such

that F(LC,N) = I , and {(C, N)
1} τ→C×P LC,N . And now we can see by the rules of trace

semantics for distributions over C×P that:

D
τ→C×P · · · · · ·

τ→C×P J + p ·
∑

(C,N)∈S(K)

L(C,N) (1)

Moreover, we can see that F(J + p ·
∑

(C,N)∈S(K) L(C,N)) = H + p · (I) = G . So now
we can apply the induction hypothesis, and we have that there exists a distribution E such
that:

J + p ·
∑

(C,N)∈S(K)

L(C,N)
s⇒C×P E (2)

F(E) = F . (3)

And now we can conclude (by equations (1) and (2)) that D
s⇒C×P E , and so the results

holds.

• The second induction case is the case where we start from a value distribution, and we are

interested in a non-empty trace. Then the derivation tree of F(D)
t⇒ F is of the form:

F(D)
@V→ G G

s⇒ F

F(D)
t=@V ·s⇒ F

The only possible way to have obtained: F(D)
@V→ G is to have used a derivation of the form:

F(D) value distribution

F(D)
@V→ G =

∑
F(D)(λx.M) · {M{V/x}1}

13

For every (C, N) ∈ S(D), let be M(C,N)such that C[N] = λx.M(C,N). Using this notation, we
can now express G as a sum over the support of the distribution D :

G =
∑

(C,N)∈S(D)

D((C, N)) · {(M(C,N){V/x})
1} (4)

We are going to define a distribution H(C,N) over C×P for every (C, N) in the support of
D . We can see that for every (C, N) ∈ S(D), we have two possible cases:

– Or C = [·], and N = λx.(M(C,N)). Then let be H(C,N) = {([·],M(C,N){V/x})
1}

– Or C = λx.D, and C[N] = M(C,N). Then let be H(C,N) = {(D{V/x}, N)
1}. Please

observe that, since the calculus is linear, D{V/x} is indeed a context.

Now we can write the equation (4) the following way:

G = F(
∑

(C,N)∈S(D)

D((C, N)) ·H(C,N)) (5)

Moreover, for every (C, N) ∈ S(D), we have: {C, N1} @V→C×P H(C,N), and so the rules of
one-step trace semantics for distribution over C×P allow us to say that:

D
@V→C×P

∑
(C,N)∈S(D)

D((C, N)) ·H(C,N) (6)

By applying the induction hypothesis to G
t⇒ F and using equation (5), we know that there

exists I such that: ∑
(C,N)∈S(D)

D((C, N)) ·H(C,N)
s⇒C×P I (7)

and F(I) = F (8)

And now we can conclude by using the rules of trace semantics for distributions over C×P

that D
@V ·s⇒ C×P I , and since we have equation (8) the result holds.

�

�

4.3 ε-parents distributions

Lemma 7 allows us to give yet another equivalent formulation of Theorem 1: if δtr(M,N) ≤ ε,

then if {(C,M)
1} s⇒C×P D and {(C, N)

1} s⇒C×P E , it holds that |
∑

D −
∑

E | ≤ ε. We are in
fact going to show a stronger result, which uses the notion of ε-related distributions:

Definition 11 We say that two distributions D and D ′ over C × P are ε-related, and we note
D ≡par

ε D ′ if there exist n ∈ N, and C1, ..., Cn distinct contexts, p1, ..., pn positive real numbers with∑
i pi ≤ 1, and E1, ...,En, and E ′1, ...,E

′
n distributions over P, such that:

• D =
∑

1≤i≤n pi · (Ci,Ei)

• D ′ =
∑

1≤i≤n pi · (Ci,E ′i)

• ∀i, δtr(Ei,E ′i) ≤ ε

14

Please observe that, if δtr(M,N) ≤ ε, then for every context C, the distributions {(C,M)
1} and

{(C, N)
1} are ε-related. In fact, the notion of ε-relatedness is a way to capture the idea of a pair

of distributions over C×P representing the same environment, in which we put programs which
are close for the trace pseudometric. The following can be seen as a stability result: if we start
from ε-related distributions, and we do a trace s, we end up in two distributions which are still
ε-related.

Lemma 11 Let be D , E distributions over C×P, and ε ∈ [0, 1] such that D ≡par
ε E . Let be s a

trace. Let be F and G such that: D
s⇒C×P F , and E

s⇒C×P G . Then F ≡par
ε G

Proof. If D is a distribution over P, we note D? the distribution such that D
ε⇒ D?. Please

observe that it is the normal form of D for the transition relation · τ→ ·. Similarly, if D is a
distribution over C×P, D? the distribution such that D

ε⇒C×P D?. We are first going to show
two auxiliary lemma:

Lemma 12 Let be D , E two distributions over C×P such that D ≡par
ι E . Then D? ≡par

ι E ? .

Proof. We will use Kr(a, b) as an integer being 1 if a is equal to b, and 0 otherwise. Let be F
any distribution over C×P. We note

nmax(F) = max{n | F τn

→C×P F ?}

We are going to show the lemma by induction on: n = max (nmax(D), nmax(E)).

• If n = 0 then D? = D , and E = E ?, and the result holds.

• If n > 0: Then we have: there exist p1, ..., pn, and E1, ...,En, and E ′1, ...,E
′
n such that:

D =
∑

1≤i≤n

pi · (Ci,Di)

E =
∑

1≤i≤n

pi · (Ci,Ei)

∀i,δtr(Di,Ei) ≤ ε

Then there exists i such that: there exists M ∈ S(Di) ∪ S(Ei), such that Ci[M] is not an
irreducible term. We consider every possible case for the form of Ci[M]:

– or Ci is an evaluation context, and there exist M ∈ S(Di) ∪ S(Ei), such that M is not
an irreducible term. Intuitively, we want to reduce Di and Ei as much as possible,
since they are in evaluation position. And the two resulting distributions should be
again ε-related distributions. More precisely, for every M ∈ S(D)i ∪ S(E)i, we note

FM =
(
{M1}

)?
. Then the rules of

τ→C×P allow us to see that there exist k1 and k2

such that k1 + k2 > 0, and:

D
τk1

→C×P D ′ =
∑
j 6=i

pj · (Cj ,Dj) + pi(Ci,
∑
M

Di(M) ·FM),

and

E
τk2

→C×P E ′ =
∑
j 6=i

pj · (Cj ,Ej) + pi(Ci,
∑
M

Ei(M) ·FM).

We can easily show that D ′ ≡par
ε E ′, and moreover, max (nmax(D ′), nmax(E ′)) <

max (nmax(D), nmax(E)). So we can apply the induction hypothesis, and we have that
D? ≡par

ε E ?.

15

– If Ci is such that the reduction depends only of the Ci, that is if there exist q1, .., qm,...,
such that for every term N ,

Ci[N]→ q1 · D1[N] + ...+ qm · Dm[N].

Then the rules of
τ→C×P allows us to show that there exist k1 and k2, such that

k1 + k2 > 0:

D
τk1

→C×P D ′ =
∑
j 6=i

pj · (Cj ,Dj) + pi ·
∑

1≤k≤m

qk · (Dk,Di)

and that

E
τk2

→C×P E ′ =
∑
j 6=i

pj · (Cj ,Ej) + pi ·
∑

1≤k≤m

qk · (Dk,Ei).

In the definition of ε-related distribution, we consider contexts (Cj)j disjoints. So since
we want to show that the new distributions we have obtained are still ε-related, we
have to regroup the identical contexts (for instance, it can be the case that: Dk = Cj):
We note C = {(Cj)j 6=i∪(Dk)1≤k≤m} the set of all contexts that can have been obtained
at this step. For C ∈ C, we take p′C his total probability: p′C =

∑
j 6=iKr(C, Cj) · pj +∑

1≤k≤mKr(C,Dk) · pi · qk, and similarly:

D ′C =
∑
j 6=i

Kr(C, Cj) ·
pj
p′C
·Dj +

∑
1≤k≤m

Kr(C,Dk) · pi · qk
p′C

·Di

, and

E ′C =
∑
j 6=i

Kr(C, Cj) ·
pj
p′C
· Ej +

∑
1≤k≤m

Kr(C,Dk) · pi · qk
p′C

· Ei.

And now we have
D ′ =

∑
C∈C

p′C(C,D ′C)

, and similarly:

E ′ =
∑
C∈C

p′C(C,E ′C),

and for every C ∈ C, δtr(D ′C ,E
′
C) ≤ ε.

– The last case is the case where the term and the context really interact: more precisely,
Di is a value distribution, and moreover:

∗ Either Ci = D[[·]V], which means that we are in the case where the contexts pass
values to the program. Then the following facts are derivable with the rules of
τ→C×P:

D
τk1

→C×P D ′ =
∑
j 6=i

pj · (Cj ,Dj)

+ pi · (D,
∑
λx.N

Di(λx.N) · {N{V/x}1})

and

E
τk2

→C×P E ′ =
∑
j 6=i

pj · (Cj ,Ej)

+ pi · (D,
∑
λx.N

Ei(λx.N) · {N{V/x}1})

16

We are now going to show that D ′ and E ′ are ε-related. We should again regroup
the identical contexts (for instance, it can be the case that: D = Cj): We note
C = {(Cj)j 6=i ∪ (D)} the set of all contexts that can have been obtained at this
step. For C ∈ C, we take p′C his total probability defined as p′C =

∑
j 6=iKr(C, Cj) ·

pj +Kr(C,D) · pi, and we obtain:

D ′C =
∑
j 6=i

Kr(C, Cj) ·
pj
p′C
·Dj

+Kr(C,D) · pi
p′C
·
∑
λx.N

Di(λx.N) · {N{V/x}1}

and

E ′C =
∑
j 6=i

Kr(C, Cj) ·
pj
p′C
· Ej

+Kr(C,D) · pi
p′C
·
∑
λx.N

Ei(λx.N) · {N{V/x}1}

We have that: ∀j 6= i, δtr(D ′j = Dj ,E ′j = Ej) ≤ ε by hypothesis, and moreover, for
every trace s:

|Pr(

(∑
λx.N

Di(λx.N) · {N{V/x}1}

)
, s)

− Pr(

(∑
λx.N

Ei(λx.N) · {N{V/x}1}

)
, s)|

=|
∑
λx.N

Di(λx.N) · Pr(N{V/x}, s)

−
∑
λx.N

Ei(λx.N) · Pr(N{V/x}, s)|

=
∑
λx.N

Di(λx.N) · Pr(λx.N),@V · s)

−
∑
λx.N

Di(λx.N) · Pr(λx.N),@V · s)|

= |Pr(Di,@V · s)
− Pr(Ei,@V · s)|
≤ε

Since the relation δtr(·, ·) ≤ ε on terms distribution is stable by convex summations,
the result holds.

∗ Or Ci = D[λx.N [·]] Then the rules of
τ→C×P allows us to show that there exist k1

and k2 with k1 + k2 > 0, and such that:

D
τk1

→C×P D ′ =
∑
j 6=i

pj · (Cj ,Dj) + pi · (N{[·]/x},Di)

and:

E
τk2

→C×P E ′ =
∑
j 6=i

pj · (Cj ,Ej) + pi · (N{[·]/x},Ei)

, and we can easily see that D ′ ≡par
ε E ′.

�

17

Lemma 13 Let be ε > 0. If D and E are two value distributions over C×P (and consequently,

in normal form for · τ→ ·) with D ≡par
ε E , then for every V , there exists F , G with F ≡par

ε G

such that D
@V→C×P F , and E

@V→C×P G .

Proof. By hypothesis, we know that D ≡par
ε E , and so we can write D and E as:

D =
∑
i

pi · (Ci,Di) and E =
∑
i

pi · (Ci,Ei)

and ∀i, δtr(Di,Ei) ≤ ε

When Di is a term distribution in normal form (i.e with value or non-reducible terms), we note

D ′i =
∑
λx.M

D(λx.M) · {M{V/x}1}

and E ′i =
∑
λx.M

E (λx.M) · {M{V/x}1}

And we have

D
@V→C×P F =

∑
i|Ci=[·]

pi · ([·],D ′i) +
∑

i|Ci=λx.Di

pi · (Di{V/x},Di)

, and similarly:

E
@V→C×P G =

∑
i|Ci=[·]

pi · ([·],E ′i) +
∑

i|Ci=λx.Di

pi · (Di{V/x},Ei)

, and we can see that δtr(F ,G) ≤ ε. �

We can now use these two auxiliary lemma in order to prove Lemma 11. The proof is by induction
on the length of s:

• : if s = ε, then we have that F = D?, G = E ? and we have that F ≡par
ε G by Lemma 12.

• if s = @V · t. Let be H , I such that D? @V→C×P H and E ? @V→C×P H . We have (since
s⇒ is confluent):

D
ε⇒C×P D? @V→C×P H

t⇒ F .

and
E

ε⇒C×P E ? @V→C×P I
t⇒ G .

Then by Lemma 12 we have: D? ≡par
ε E ?. Now we can apply Lemma 13, and we obtain that

H ≡par
ε I . And now we apply the induction hypothesis to t, and we obtain that F ≡par

ε G .

�

4.3.1 Proof of Theorem 1.

We can now see that Theorem 1 is a direct consequence of Lemma 11. Indeed, let M and N
be two programs at distance at most ε for the trace metric, and let D and E be such that
{C,M1} s⇒C×P D , and {C, N1} s⇒C×P E . Then, as we have already observed, {C,M1} and
{C, N1} are ε-related. By Lemma 11, we can deduce that D and E are ε-related. And it is easy
to see that it implies that |

∑
D −

∑
E | ≤ ε.

18

4.4 Adding Pairs to the Calculus

The trace distance and the results we have just presented about it can be extended to an affine
λ-calculus with pairs, namely a calculus whose language of terms also includes the following two
constructs:

M ::= 〈M,N〉 | let 〈x, y〉 = M in N.

We assume that terms are typed in any linear type system guaranteeing the absence of deadlocks
(e.g., simple recursive types), and we add the following rules to the big-step semantics:

〈M,N〉 ⇓ {〈M,N〉1}

M ⇓ D (L ⇓ FL, K ⇓ GK)〈L,K〉∈S(D) N{V/x}{W/y} ⇓ EV,W

let 〈x, y〉 = M in N ⇓
∑

D(〈L,K〉) ·FL(V) · GK(W) · EV,W
We would now like to extend the definition of a trace to pairs accordingly: which action should

we perform on a term in the form 〈M,N〉? The näıve solution would be to add projections to the

trace language: s ::= π1 · s | π2 · s, with trace interpretation extended in the expected way:

Pr(〈M,N〉, π1 · t) = Pr(M, t)

Pr(〈M,N〉, π2 · t) = Pr(N, t)

However, this way the trace distance would not coincide with the context distance, anymore.
Indeed, let us consider the following example:

Example 3 We are going to compare the following terms:

M := 〈λz.(I ⊕ Ω), λz.(I ⊕ Ω)〉; N := 〈λz.I, λz.I〉.

These two terms are at context distance at least 3
4 , since we can consider the context C :=

let 〈x, y〉 = [·] in (xI)(yI), and we can see that
∑

JC[M]K = 1
4 , while

∑
JC[N]K = 1. But

we cannot find any trace that separates them more than 1
2 . The interesting case is when s = πi · t.

But then:

|Pr(M, s)− Pr(N, s)| = |Pr(λz.(Ω⊕ I), t)− Pr(λz.I, t)|
≤ δtr(λz.(Ω⊕ I), λz.I).

And it is easy to see that in the calculus with pairs we still have δtr(λz.(Ω⊕ I), λz.I) = 1
2 .

The reason why we cannot recover the context distance by way of projections is that the let

construct above allows us to access both components of a pair, and the distances each of them
induce can add up. A way out consists in extending the trace language to pairs really following
linearity, and considering a new action in the form ⊗M with the following extension of trace
interpretation:

Pr(〈M,N〉,⊗L · t) =
∑
V,W

JMK(V) · JNK(W) · Pr(L{V,W/x, y}, t)

Please observe that we could in fact express the pairs in the original language [2]: let us consider

Θ : Λ
〈,〉
⊕ → Terms defined by

Θ(〈M,N〉) := λx.xΘ(M)Θ(N)

Θ(let 〈x, y〉 = M in N) := Θ(M) (λx.(λy.Θ(N)))

Θ(λx.M) := λx.Θ(M) · · ·

19

Moreover, we could see that every trace for the language Λ
〈,〉
⊕ can be seen as a trace in the original

language: We can extend Θ : T r(Λ〈,〉⊕)→ T r, by:

Θ(ε) = ε

Θ(@V · s) = @V ·Θ(s)

Θ(⊗M · s) = λx.λy.M ·Θ(s)

and we have for every term M ∈ Λ
〈,〉
⊕ , and for every trace s ∈ T r(Λ〈,〉⊕),

Pr(M, s) = Pr(Θ(M),Θ(s))

This way of handling pairs allows the trace distance and the context distance to coincide,
again. However, the trace distance loses its grip with respect to the context distance. Consider,
for instance, the terms M and N from Example 3. Showing an upper bound on the distance
between M and N is the same thing as showing an upper bound on δtr(L{λz.(Ω ⊕ I), λz.(Ω ⊕
I)/x, y}, L{λz.I, λz.I/x, y}) for all terms L such that x, y ` L, which is in fact not far away from
what we should show if we were considering the context distance directly.

5 The Bisimulation Distance

As we realised in the last section, the trace metric can be a way to alleviate the burden of evaluating
the context distance between terms but, in particular in presence of pairs, its usefulness can be
limited. In this section, we will look at another way to define the distance between programs
which is genuinely coinductive, and based on the Kantorovich metric for distributions.

5.1 Definition

A labelled Markov chain (LMC) is a triple M = (S,L ,P), where S is a countable set of states,
L is a countable set of labels, and P is a transition probability matrix, that is a function:
P : S ×L → Distr (S). Moreover, if the image of P only consists of distributions with finite
support, we call M an image-finite LMC. We are now going to define, in a similar way to [10]
(but in absence of non-determinism), the metric analog to bisimulation. The idea is to define a
metric on the set S of states of the LMC as the greatest fixed point of some monotone operator
on metrics. Please recall that (∆(S),≤metr) is a complete lattice, and so any monotone operator
has indeed a greatest fixed point.

Lifting Metrics to Distributions

We are going to define a way to turn any premetric over a set S into a metric over finite distribution
over S.

Definition 12 Let µ be a premetric on a set S. We define the lifting of µ as the metric on the
set of finite distributions over S defined by: for every D , E finite distributions over S, µ(D ,E) is
the optimum solution to the following linear program:

min
∑
i,j

hi,j · µ(si, sj) +
∑
i

wi +
∑
j

zj

subject to
∑
i hi,j + zj = E (sj);∑
j hi,j + wi = D(si);

∀i, j, hi,j , zj , wi ≥ 0.

Please observe that this linear program has an optimal solution. We can make use of the notion
of duality from linear programming, and obtain an alternative characterisation of lifting:

20

Theorem 3 Let µ be a premetric on S and Let D , E be finite distributions over S. Then:

µ(D , E) = max
∑
s

asD(s) + bsE (s)

subject to ∀s ∈ S, as ≤ 1;

∀s ∈ S, bs ≤ 1;

∀s, t ∈ S, as + bt ≤ µ(s, t).

Proof. By strong duality theorem in linear programming. �

We would like to have the lifting of a metric µ behaving coherently with µ itself. If we know
the lifting of µ, we should first of all be able to recover µ by considering Dirac distributions:

Lemma 14 Let µ be a premetric on S, and let s, t ∈ S. Then µ({s1}, {t1}) = µ(s, t).

Proof. Let be s, t ∈ S, and let be D = {s1}, E = {t1}. Then we can see that:

µ(D ,E) = max


∑
u au ·D(u) + bu · E (u)

with ∀u ∈ S, au ≤ 1 ∧ bu ≤ 1
and ∀u1, u2 ∈ S, au1

+ bu2
≤ µ(u1, u2)


= max

 as + bt
with as ≤ 1 ∧ bt ≤ 1
and as + bt ≤ µ(s, t)


= µ(s, t)

�

If a premetric on states verifies the triangular inequality, its lifting verifies the triangular inequality
too, which is a consequence of the following lemma:

Lemma 15 Let µ, ρ, ν be three premetrics on S, such that ∀s, t, u ∈ S, µ(s, t) ≤ ρ(s, u) + ν(u, t).
Let D , E , F be finite distributions over S. Then µ(D ,F) ≤ ρ(D ,E) + ν(E ,F).

Proof. Let be D ,E ,F finite distributions over S. We’re going to use the minimum-based defi-
nition of lifting: Let be ε, ι such that: ρ(D ,E) = ε and ν(E ,F) = ι. By assumption, there is a
finite number of states which appear in the union of the support of every considered distributions.
We numerate these states between 1 and n.
Then let be (li,j)1≤i,j≤n, (xi)1≤i≤n, (yj)1≤j≤n the coefficients for which the minimum of the op-
timisation problem associated with ρ(D ,E) is reached. They verify the following equations:

ε =
∑
i,j li,j · ρ(si, sj) +

∑
i xi +

∑
j yj

∀j,
∑
i li,j + yj = E (sj)

∀i,
∑
j li,j + xi = D(si)

∀i, j : li,j , xi, yj ≥ 0

Similarly, let be (hi,j)1≤i,j≤n, (wi)1≤i≤n, (zj)1≤j≤n the coefficients that reach the minimum
for the optimisation problem associated to ν(E ,F). They verify the following equations:

ι =
∑
j,k hj,k · ν(sj , sk) +

∑
j wj +

∑
k zk

∀k,
∑
j hj,k + zk = F (sk)

∀j,
∑
k hj,k + wj = E (sj)

∀j, k : hj,k, wj , zk ≥ 0

21

We want to show that µ(D ,F) ≤ ε+ ι. In order to do that, we would like to have coefficients
ni,k, ai, bk which verifies the constraints of the optimisation problem associated with µ(D ,F),
and such that the objective function is bounded by ε+ ι. That is, we would like to have:

∑
i
ni,k + bk = F (sk) (9)∑
k
ni,k + ai = D(si) (10)∑

i,k
ni,k · µ(si, sk) +

∑
i

ai +
∑
k

bk ≤ ε+ ι

(11)

In order to achieve that, we define the ni,k, ai, bk on the following way:

ni,k =
∑
j

li,j · hj, k
E (sj)

ai = xi +
∑
j

li,j · wj
E (sj)

bk = zk +
∑
j

hj,k · zj
E (sj)

where we have adopted the following notation: if E (sj) = 0, then hj,k = 0 = li,j , and then the

meaning of
li,j

E (sj) is 0.

Now we are going to show that this choice of coefficients gives us what we wanted to have. We
first verify that equation (10) holds. Indeed, we have that:∑

k

ni,k + ai =
∑
k

∑
j

li,j · hj, k
E (sj)

+ (xi +
∑
j

li,j · wj
E (sj)

)

= xi +
∑
j

li,j

∑
k hj,k + wj
E (sj)

= xi +
∑
j

li,j
E (sj)

E (sj)
= D(si)

We can verify in a very similar way that equation (9) holds, that is:
∑
i ni,k + bk = F (sk).

We are now going to verify that equation (11) holds. Indeed, we have that:∑
i,k

ni,kµ(si, sk) +
∑
i

ai +
∑
k

bk

=


∑
i,k

∑
j
li,j ·hj,k
E (sj) · µ(si, sk)

+
∑
i(xi +

∑
j
li,j ·wj
E (sj))

+
∑
k (zk +

∑
j
hj,k·zj
E (sj))

≤


∑
i,k

∑
j

(
li,j ·hj,k
E (sj) · µ(si, sk)

)
+
∑
i(xi +

∑
j
li,j ·wj
E (sj))

+
∑
k(zk +

∑
j
hj,k·zj
E (sj))

≤


∑
i,k

∑
j

(
li,j ·hj,k
E (sj) · (ρ(si, sj) + ν(si, sk))

)
+
∑
i(xi +

∑
j
li,j ·wj
E (sj))

+
∑
k(zk +

∑
j
hj,k·zj
E (sj))

22

≤



∑
i,j li,j · ρ(si, sj)

(∑
k hj,k

E (sj)

)
+
∑
j,k hj, k · ν(sj , sk)

(∑
i li,j

E (sj)

)
+
∑
i xi +

∑
j wj

(∑
i li,j

E (sj)

)
+
∑
k zk +

∑
j zj ·

(∑
k hj,k

E (sj)

)
≤

 ∑i,j li,j · ρ(si, sj)

+
∑
j,k hj, k · ν(sj , sk)

+
∑
i xi +

∑
j wj +

∑
k zk +

∑
j zj

≤ ε+ ι

�

Metrics as Fixpoints

In a non-probabilistic setting, a relation R is a bisimulation if every pair of states s, t such that
sR t can do the same actions and end up into states which are still bisimilar. More precisely,for
every action a, and for every state u such that s

a
 u, there exists v such that t

a
 v, and uR v.

In order to obtain a quantitative counterpart of the scheme above, we define an operator F
on the set of metrics over the states of a LMC: intuitively, given a metric µ, we define a new
metric F (µ) which corresponds to the distance obtained by first doing a step of the transition
relation, and then applying the lifting of µ to the resulting distributions. More precisely, let be
two states s and t: F (µ)(s, t) is computed in the following way: for every action a, we consider
the distance (with respect to µ) between the behaviour obtained from s after doing the action a,
and the behaviour obtained from t after doing the same action a, and then we take the maximum
over all action a of those quantity.

Definition 13 Let M = (S,L ,P) be an image-finite LMC. We define an operator F on ∆(S)
as

F (µ)(s, t) = sup{µ(P(s)(a),P(t)(a)) | a ∈ L }.

Theorem 4 For any image-finite LMC M , F has a maximum fixpoint. We call it the bisimula-
tion metric for the LMC M , and we note it δbM

Bisimulation Metric and the Affine λ-Calculus

We are now going to consider a specific LMC M Λ, which captures the interactive behaviour of
our calculus.

Definition 14 We define the LMC M Λ = (SΛ,L Λ,PΛ) where:
• The set of states SΛ is defined as follows:

SΛ = P] V,

A value V in the second component of SΛ is distinguished from one in the first by using the
notation V̂ .

• The set of labels L Λ is taken to be

L Λ = {@V | V a value}
⋃
{eval}.

• The transition probability matrix PΛ is such that: for every M ∈ P, and any value V ∈
S(JMK), it holds that PΛ(M, eval)(V̂) = JMK(V), and that for every term M such that λx.M ∈
P, and V ∈ V, it holds that PΛ(λ̂x.M,@V)(M{x/V }) = 1.

23

The results we have proved previously in this section apply to M Λ. In particular, one can define
the bisimulation metric on M Λ. The bisimulation distance on programs, which we indicate δb, is
defined to be the restriction of δb

MΛ to programs.

Definition 15 We define a metric δb on the set of closed terms, by: for every M , N ,

δb(M,N) = δbMΛ(M,N)

Lemma 16 For this particular LMC, we have that:

F (µ)(λ̂x.M, λ̂x.N) = sup{µ(M{V/x}, N{V/x}) | V a value }
F (µ)(M,N) = µ(JMK, JNK)}

F (µ)(M, V̂) = 0

We can see easily that δb is an adequate metric.

Lemma 17 δb is an adequate metric on programs.

Proof. We have to show: for every M , N :

|
∑

JMK−
∑

JNK| ≤ δb(M,N)

�

But there is more, since the bisimulation metric is well-known to be a lower bound on the trace
distance: the bisimulation distance is a sound metric. In the next section, we anyway show
non-expansiveness for it, which is stronger.

5.2 Non-Expansiveness

Proving the non-expansiveness of δb cannot be done directly, by a plain induction on contexts.
Our strategy towards the result is the Howe’s technique [16], a way of proving congruence of
coinductively-defined equivalences which has been widely used for deterministic and non-deterministic
languages, and that we here adapt to metrics.

The idea, then, is to start from δb, to construct another metric δbH on top of δb (which turns

out to be non-expansive by construction), and to show that δbH = δb. We first need to transform
our metric δb on programs into a metric on (potentially open) terms. Any metric µ on programs
can be extended into a metric on open terms, which by abuse of notation we continue to call µ
and which is defined as follows

µ(M,N) = sup
V1,...,Vn

µ(M{V1, . . . , Vn/x1, . . . , xn},

N{V1, . . . , Vn/x1, . . . , xn}),

where x1, . . . , xn are the variables occurring free in either M or N .

Definition 16 Let be µ a metric on terms. An Howe judgement is a element of the form
(Γ, (M,N), ε), where Γ is a typing context, M and N are two terms, and ε ∈ [0, 1]. We say
that an Howe judgement is valid, and we note Γ ` µH(M,N) ≤ ε , if it can be derived by the
rules of figure 5.

Please observe that, potentially, there are several different ε such that Γ ` µH(M,N) ≤ ε.
We are finally in a position to define the Howe’s lifting of µ:

Definition 17 Let be µ a metric on terms. We define a premetric µH on terms by:

µH(M,N) = inf
(
{ε | ∃Γ,Γ ` µH(M,N) ≤ ε}

⋃
{1}
)
.

24

µ(x,M) ≤ ε x,Γ `M
x,Γ ` µH(x,M) ≤ ε

Γ ` µH(M,K) ≤ ε ∆ ` µH(N,T) ≤ γ µ(KT,L) ≤ ι Γ,∆ ` L
Γ,∆ ` µH(MN,L) ≤ ε+ γ + ι

Γ ` µH(M,K) ≤ ε Γ ` µH(N,T) ≤ ι µ(K ⊕ T, L) ≤ γ Γ ` L
Γ ` µH(M ⊕N,L) ≤ ε+ι

2 + γ

x,Γ ` µH(M,K) ≤ ε µ(λx.K,L) ≤ ι Γ ` L
Γ ` µH(λx.M,L) ≤ ε+ ι

Figure 5: Rule for Howe’s constructor on metrics

The following lemma says that the optimum value of ε can be reached with any typing context
Γ which contains the free variables of M and N .

Lemma 18 For every terms M , N , for every typing contexts Γ, and every real ε such that
Γ ` µH(M,N) ≤ ε, we have that: FV (M) ∪ FV (N) ⊆ Γ. Moreover, for any context ∆ such
that {ι | ∆ ` µH(M,N) ≤ ι} 6= ∅, then inf{ι | ∆ ` µH(M,N) ≤ ε} ≤ ε.

We can see that δbH is a premetric on open terms. Please observe that it is not necessarily a
metric, since its construction entails neither symmetry nor the triangular inequality.

Lemma 19 If µ is any premetric on closed terms, then µH is a premetric on (potentially open)
terms.

Lemma 20 For every terms M , N :

µH(M,N) ≤ µ(M,N)

The construction of Howe’s lifting allows us to have the two following properties:

Lemma 21 (Pseudo-Transitivity) Let be µ a metric on terms. For every terms M, N, L:

µH(M,N) ≤ µH(M,L) + µ(L,N)

Proof. Let be ε such that Γ ` µH(M,L) ≤ ε is a valid judgement. It is enough to show that

Γ ` µH(M,N) ≤ ε+ µ(L,N)

is a valid judgement.The proof is by induction on the rules of the construction of valid judgements.
�

Lemma 22 (Pseudo-substitutivity) If µ verifies that, for every terms M,N , for every values
V : µ(M{V/x}, N{V/x}) ≤ µ(M,N). Then for every terms M,N , for every values V , W :

µH(M{V/x}, N{W/x}) ≤ µH(M,N) + µH(V,W)

Please observe that, the open extension of a metric on closed term verifies the hypothesis.

Proof. Let be ε such that: Γ ` µH(M,N) ≤ ε. The proof is by induction on the structure of the
derivation of Γ ` µH(M,N) ≤ ε.

• If the derivation is:
µ(x,N) ≤ ε

Γ, x ` µH(x,N) ≤ ε
: Then M{V/x} = V . Then, since µ is pseudo

substitutive: µ(W,N{W/x}) ≤ µ(M,N) ≤ ε. Now by pseudo-transitivity of µH , we have
that: µH(V,N{W/x}) ≤ µH(V,W) + µ(W,N{W/x}) ≤ µH(V,W) + ε.

25

• If the derivation is:

Γ ` µH(T,K) ≤ ε ∆ ` µH(U,P) ≤ γ Γ,∆ ` L µ(KP,L) ≤ ι
Γ,∆ ` µH(TU,L) ≤ ε+ ι+ γ

We know that x cannot appear both in Γ and in ∆. Suppose for example that x doesn’t
appear in ∆ . Then (by Lemma 18) x doesn’t appear in FV (U)∪ FV (P). Then: We apply
the induction hypothesis to: µH(T,K) ≤ ε. We have:

µH(T{V/x},K{W/x}) ≤ µH(T,K) + µH(V,W) ≤ ε+ µH(V,W).

Moreover, since µ(KP,L) ≤ ι, we have that (since µ is value substitutive):

µ((KP){W/x}, L{W/x}) ≤ ι

So now, we have that:

Γ \ x ` µH(T{V/x},K{W/x}) ≤ ε+ µH(V,W)
∆ ` µH(U,P) ≤ γ µ(K{W/x}P,L{W/x}) ≤ ι Γ \ x,∆ ` L{W/x}

Γ \ x,∆ ` µH((TU){V/x}, L) ≤ ε+ ι+ γ + µH(V,W)

• Other cases are similar.

�

The interest of this construction is that the metric δbH is (more or less by construction) non-
expansive:

Lemma 23 (Non-expansiveness of δb
H

) For every context C and for every terms M , N it

holds that δb
H

(C[M], C[N]) ≤ δbH(M,N).

Proof. The proof is by induction on the structure of the context C. �

The goal now is to show that δbH ≤metr δb. Since δb is the greatest fixed point of F for our LMC

M Λ, we are going to show that δbH can be extended into a metric on the states of M Λ, obtaining

a fixed point for the operator F . First we extend δbH to a premetric on SΛ:

Definition 18 We define the extension of δb
H

to SΛ (that we note still δb
H

by abuse of notation),
by:

δb
H

(M,N) = δb
H

(M,N);

δb
H

(V̂ , Ŵ) = δb
H

(V,W);

δb
H

(M, Ŵ) = 1.

Since δbH isn’t guaranteed to be a metric, we are forced to further refine it, by adding rules

corresponding to symmetry and to the triangular inequality: we define δbH
4 over SΛ by the rules

of Figure 6.

Definition 19 We define a valid δb
H
4-judgement ` δbH4(s, t) ≤ ε, where s, t ∈ SΛ, ε ∈ [0, 1], as

the judgements which have a finite proof-tree by using the rules of Figure 6.

We define δb
H
4 a metric over SΛ by:

δb
H

4(s, t) = inf {ε | ` δbH4(s, t) ≤ ε}

Lemma 24 δb
H
4 is a metric.

26

δb
H

(s, t) ≤ ε

` δbH4(s, t) ≤ ε

` δbH4(s, t) ≤ ε ` δbH4(t, s) ≤ ι

` δbH4(s, t) ≤ min(ε, ι)

` δbH4(s, t) ≤ ε ` δbH4(t, u) ≤ ι

` δbH4(s, u) ≤ ε+ ι

Figure 6: Metric Closure of δbH

We can see easily that δb ≤metr δbH ≤metr δbH
4 with respect to the preorder on terms. We

want to show that δbH = δb. In order to have that, we will show that δbH
4 ≤metr δb. That is a

direct consequence of the following theorem:

Theorem 5 δb
H
4 is a pre-fixpoint of F .

Proof. We need to show that δbH
4 ≤metr F (δbH

4). Please remember that the preorder on metrics
corresponds to the reverse of the point-wise preorder for states. So if we read this inequality on
metrics as an inequality on the states of M Λ, we see that it is equivalent to: for every s, t ∈ SΛ,

F (δbH
4)(s, t) ≤ δbH

4(s, t). If we unfold the definition of the operator F on metrics, we can see

that it means that for every a ∈ L Λ, δbH
4(PΛ(s, a),PΛ(t, a)) ≤ δbH

4(s, t). Please remember that
there are two kinds of actions in our LMC: the action eval of evaluating a program to obtain a
value distribution, and the action @V , which corresponds to passing the value V to a distinguished
value. If we consider separately each of these actions, we see that the result we want to have is
equivalent to:

• Let be M , N closed terms. Then δbH
4(ĴMK, ĴNK) ≤ δbH

4(M,N)
• Let be M , N such that x ` M and x ` N , and let V be a value. Then it holds that:

δbH
4(M{V/x}, N{V/x}) ≤ δbH

4(λ̂x.M, λ̂x.N)

We are first going to show these two result to the original premetric on terms δbH , and we will

extend them later to δbH
4.

Lemma 25 (Key-Lemma) Let be M and N two closed terms. Then:

δb
H

(JMK, JNK) ≤ δbH(M,N)

Proof. We show in fact that, for every ε such that the judgement ` δbH(M,N) ≤ ε is a valid one,

it holds that δbH(JMK, JNK) ≤ ε. We show that by induction on the structure of the derivation
of: M ⇓ JMK

• If M is a value: then M = λx.K, and the derivation of M ⇓ JMK is of the following form:

λx.K ⇓ {λx.K1}

Then the proof tree allowing to certify the validity of ` δbH(M,N) ≤ ε should be of the
form:

x ` δbH(T,K) ≤ γ δb(λx.K,N) ≤ ι

` δbH(λx.T,N) ≤ ε = γ + ι

Since δb is a fixpoint of F , we have that: δb(Jλx.KK, JNK) ≤ δb(λx.K,N) ≤ ι. And so:

δbH(Jλx.T K, JNK) ≤ δbH(Jλx.T K, Jλx.KK) + δb(Jλx.KK, JNK) by lemma 21

≤ δbH(Jλx.T K, Jλx.KK) + δ

27

Moreover, since λx.T and λx.K are values, we know that: Jλx.T K = {λx.T 1}, and Jλx.KK =

{λx.K1}. By Lemma 14, we can see that: δbH(Jλx.T K, Jλx.KK) = δbH(λx.T , λx.K). It

follows that: δbH(Jλx.T K, JNK) ≤ δbH(λx.T , λx.K) + δ and since we have the following
proof tree, it allows us to conclude.

x ` δbH(T,K) ≤ γ δb(λx.K, λx.K) ≤ 0

` δbH(λx.T, λx.K) ≤ γ

• If M = UL. Then the derivation of M ⇓ JMK is the following:

U ⇓ JUK L ⇓ JLK
{P{V/x} ⇓ JP{V/x}K}λx.P∈S(JUK),V ∈S(JLK)

MN ⇓
∑

JUK(λx.L) · JLK(V) · JP{V/x}K

And the proof tree corresponding to the validity of ` δbH(M,N) ≤ ε has the following
form:

` δbH(U,K) ≤ β ` δbH(L, T) ≤ γ δb(KT,N) ≤ ι

` δbH(UL,N) ≤ ε = β + γ + ι

We have:

δbH(JULK, JNK) ≤ δbH(JULK, JKT K) + δb(JKT K, N)

≤ δbH(JULK, JKT K) + ι

So it is enough to show that: δbH(JULK, JKT K) ≤ ε+ γ.

So we have that:

δbH(JULK, JKT K) = max

{∑
s

as · JULK(s) + bsJKT K(s) | as ≤ 1, bs ≤ 1 ∧ as + bt ≤ δbH(s, t)

}
= max{

∑
s

(as ·
∑
P

∑
V

JUK(λx.P) · JLK(V) · JP{V/x}K(s)+

bs ·
∑
Q

∑
W

JKK(λx.Q) · JT K(W) · JQ{W/x}K(s))

| as ≤ 1, bs ≤ 1 ∧ as + bt ≤ δbH(s, t)}

We are now going to use the dual characterisation of the lifting of a metric to a distribution:

We know that: δbH(U,K) ≤ ε.
So there exist (lP,Q)λP.∈S(JUK),λQ.∈S(JKK), and (xP)λx.P∈S(JUK), and (yQ)λx.Q∈S(JKK), such
that: ∑

P,Q

lP,Q · δbH(λx.P, λx.Q) +
∑
P

xP +
∑
Q

yQ = δbH(U,K) (12)

∑
P

lP,Q + yQ = JKK(λx.Q) (13)∑
Q

lP,Q + xP = JUK(λx.P) (14)

Please observe that the equation (12) implies in particular that:
∑
P,Q lP,Q ≤ 1. Similarly,

the equations (13) and (14) implies that
∑
P xP, ≤ 1 and

∑
Q yQ ≤ 1

28

and

δbH(JULK, JKT K) = max{
∑
s

(as ·
∑
P

∑
V

∑
Q

lP,Q + xP

 · JLK(V) · JP{V/x}K(s)

+ bs
∑
Q

∑
W

(∑
P

lP,Q + yQ

)
· JT K(W) · JQ{W/x}K(s))

| as ≤ 1 ∧ bs ≤ 1 ∧ as + bt ≤ δbH(s, t)}

= max{
∑
s

∑
P,Q

(lP,Q
∑
V

as · JLK(V) · JP{V/x}K(s) + bs · JT K(W) · JQ{W/x}K(s)

+
∑
s

as ·
∑
P

xP
∑
V

·JLK(V) · JP{V/x}K(s)

+
∑
s

bs
∑
Q

yQ
∑
W

·JT K(W) · JQ{W/x}K(s)

| as ≤ 1 ∧ bs ≤ 1 ∧ as + bt ≤ δbH(s, t)}

≤ max{
∑
s

∑
P,Q

(lP,Q
∑
V

as · JLK(V) · JP{V/x}K(s) + bs · JT K(W) · JQ{W/x}K(s)

| as ≤ 1 ∧ bs ≤ 1 ∧ as + bt ≤ δbH(s, t)}

+ max{
∑
s

as ·
∑
P

xP
∑
V

·JLK(V) · JP{V/x}K(s)

| as ≤ 1, bs ≤ 1 ∧ as + bt ≤ δbH(s, t)}

+ max{
∑
s

∑
Q

yQ
∑
W

bs · JT K(W) · JQ{W/x}K(s)

| as ≤ 1, bs ≤ 1 ∧ as + bt ≤ δbH(s, t)}

≤ max{
∑
s

∑
P,Q

(lP,Q
∑
V

as · JLK(V) · JP{V/x}K(s) + bs · JT K(W) · JQ{W/x}K(s)

| as ≤ 1 ∧ bs ≤ 1 ∧ as + bt ≤ δbH(s, t)}

+
∑
P

xP +
∑
Q

yQ

We can now apply the induction hypothesis to δbH(L, T) ≤ γ. We obtain that: δbH(JLK, JT K) ≤
γ. So there exist (hV,W)V ∈S(JLK),W∈S(JT K), and (wV)V ∈S(JLK), and (zW)W∈S(JT K), such that:∑

V,W

hV,W · δbH(V,W) +
∑
V

wV +
∑
W

zW = δbH(L, T) ≤ γ (15)

∑
V

hV,W + zW = JT K(W) (16)∑
W

hV,W + wV = JLK(V) (17)

And now we have:

δbH(JULK, JKT K)

29

≤ max{
∑
s

∑
P,Q

lP,Q(
∑
V

(
∑
W

hV,W + wV) · JP{V/x}K(s) · as

+
∑
W

(
∑
V

hV,W + zW) · JQ{W/x}K(s) · bs)

| as ≤ 1, bs ≤ 1 ∧ as + bt ≤ δbH(s, t)}

+
∑
P

xP +
∑
Q

yQ

≤ max{
∑
P,Q

(lP,Q(
∑
V,W

hV,W
∑
s

JP{V/x}K(s) · as + JQ{W/x}K(s) · bs

+
∑
V

wV ·
∑
s

JP{V/x}K(s) · as

+
∑
W

zW ·
∑
s

JQ{W/x}K(s)) · bs

| as ≤ 1 ∧ bs ≤ 1 ∧ as + bt ≤ δbH(s, t)}

+
∑
P

xP +
∑
Q

yQ

≤
∑
P,Q

lP,Q(
∑
V,W

hV,W max{
∑
s

JP{V/x}K(s) · as + JQ{W/x}K(s) · bs | as ≤ 1 ∧ bs ≤ 1 ∧ as + bt ≤ δbH(s, t)}

+
∑
V

wV ·max{
∑
s

JP{V/x}K(s) · as | as ≤ 1 ∧ bs ≤ 1 ∧ as + bt ≤ δbH(s, t)}

+
∑
W

zW ·max{
∑
s

JQ{W/x}K(s) · bs | as ≤ 1 ∧ bs ≤ 1 ∧ as + bt ≤ δbH(s, t)})

+
∑
P

xP +
∑
Q

yQ

Now, we can use equation (15), and the fact that the sum of a distribution is always lesser
or equal to 1:

δbH(JULK, JKT K) ≤
∑
P,Q

lP,Q

∑
V,W

hV,W δ
bH(P{V/x}, Q{W/x}) +

∑
V

wV +
∑
W

zW


+
∑
P

xP +
∑
Q

yQ

We can here use lemma 22, which states that δbH is pseudo-substitutive:

δbH(JULK, JKT K) ≤
∑
P,Q

lP,Q

∑
V,W

hV,W (δbH(P,Q) + δbH(V,W)) +
∑
V

wV +
∑
W

zW


+
∑
P

xP +
∑
Q

yQ

30

≤
∑
P,Q

lP,Q(
∑
V,W

hV,W) · δbH(P,Q) +
∑
P

xP +
∑
Q

yQ

+
∑
P,Q

lP,Q
∑
V,W

hV,W · δbH(V,W) +
∑
V

wV +
∑
W

zW)

and, since
∑
V,W hV,W ≤ 1, and similarly

∑
P,Q lP,Q ≤ 1, we have that:

δbH(JULK, JKT K) ≤
∑
P,Q

lP,Q · δbH(P,Q) +
∑
P

xP +
∑
Q

yQ

+
∑
V,W

hV,W · δbH(V,W) +
∑
V

wV +
∑
W

zW

We can now use equations (12) and (15):

δbH(JULK, JKT K) ≤ δbH(JUK, JKK) + δbH(JLK, JT K) ≤ ε+ γ

�

Lemma 26
δb
H

(M{V/x}, N{V/x}) ≤ δbH(λx.M, λx.N)

Proof. Let be ε such that: ` δbH(λx.M, λx.N) ≤ ε
The only rule that can have been applied is:

x ` δbH(M,K) ≤ γ δb(λx.K, λx.N) ≤ ι ` λx.N

` δbH(λx.M, λx.N) ≤ ε = γ + ι

We can now apply Lemma 22 to x ` δbH(M,K) ≤ ε, and we see that: δbH(M{V/x},K{V/x}) ≤
δbH(M,K) ≤ ε. Moreover, we know that δb(λx.K, λx.N) ≤ ι. Since δb is a fixpoint for F , we can
see that:

γ ≥ δb(λx.K, λx.N) = δb(λ̂x.K, λ̂x.N) ≥ δb(K{V/x}, N{V/x})

and now we can conclude by Lemma 21 that: δbH(M{V/x}, N{V/x}) ≤ ι+ γ �

Now we extend these two lemmas to δbH
4:

Lemma 27 Let be M , N two terms. Then

δb
H

4(ĴMK, ĴNK) ≤ δbH4(M,N)

Proof. Let be ε such that the judgement ` δbH
4(M,N) ≤ ε is valid by the rules of figure 6. We

are going to show by induction on the structure of its derivation that: δbH
4(ĴMK, ĴNK) ≤ ε. We

consider different cases depending of the structure of the proof tree used to derive the validity of

` δbH
4(M,N) ≤ ε:

• If the proof tree is:

δbH(M,N) ≤ ε

` δbH
4(M,N) ≤ ε

31

We can use Lemma 25, and we obtain that δbH(JMK, JNK) ≤ ε. Now we can see that:

δbH

4(ĴMK, ĴNK) ≤ δbH(ĴMK, ĴNK) since δbH ≤metr δbH

4

= δbH(JMK, JNK) by construction of the extension of δbH to SΛ

≤ ε

• If the proof tree is of the form:

` δbH
4(M,N) ≤ γ ` δbH

4(N,M) ≤ ι

` δbH
4(M,N) ≤ ε = min(γ, ι)

We can apply the induction hypothesis to ` δbH
4(M,N) ≤ γ and ` δbH

4(N,M) ≤ ι. We

obtain that δbH
4(ĴMK, ĴNK) ≤ γ and that δbH

4(ĴNK, ĴMK) ≤ ι. Since δbH
4 is symmetric, it

means that: δbH
4(ĴMK, ĴNK) ≤ ι. And so we have the result.

• If the proof tree is of the form:

` δbH
4(M, s) ≤ γ ` δbH

4(s,N) ≤ ≤ι

` δbH
4(M,N) ≤ ε = γ + ι

If ε = 1, the result holds. Otherwise, please observe that s cannot be a distinguished value.

So there exist a closed term L such that s = L. By induction hypothesis: δbH
4(ĴMK, ĴLK) ≤ γ,

and δbH
4(ĴLK, ĴNK) ≤ ι. So by Lemma 15, and since δbH

4 verifies the triangular inequality,

we have: δbH
4(ĴMK, ĴNK) ≤ γ + ι.

�

Lemma 28 For every M , N :

δb
H

4(M{V/x}, N{V/x}) ≤ δbH4(λ̂x.M, λ̂x.N)

Proof. Let be ε such that the judgement ` δbH
4(λ̂x.M, λ̂x.N) ≤ ε is valid. As for the previous

lemma, the proof is by induction on the structure of the proof tree for this judgement. �

�

Since δbH is non-expansive by construction, we now have the result we were aiming for:

Theorem 6 δb is non-expansive.

Proof. As a consequence of Theorem ??, δb = δbH . Since δbH is non-expansive, the result holds.
�

5.3 On Full-Abstraction and Pairs

The bisimulation distance is a sound approximation of the context distance. But how about full-
abstraction? Is there any hope to prove that the two coincide? The answer is negative: there are
terms whose distance is strictly higher in the bisimulation metric than in the context (or trace)
metric.

32

Example 4 Consider the following terms: M corresponds to the program that takes an argument,
and then returns I with probability 1

2 , and diverges with probability 1
2 . N corresponds to the program

which chooses first between the function which return I whenever it is called, and the function which
diverges whenever called. Formally:

M := λx.(I ⊕ Ω); N := (λx.I)⊕ (λx.Ω).

These two terms are at distance 0 for the context distance: since the calculus is linear, the step
where the choice is done is irrelevant. However, δb(M,N) = 1

2 : the proof, use the characterisation
of bisimulation distance by testing from [9], in which not only linear tests, but also more complicated
tests (like threshold tests) are available.

But how about pairs? Indeed, for the sake of simplicity, we have presented the metatheory of
the bisimulation metric for a purely applicative λ-calculus. Following the lines of our discussion in
Section 4.4, however, the LMC M Λ can be extended into one handling pairs in a relatively simple
way. The difficulties we encountered when trying to evaluate the (trace, or context) distance
between pairs of terms unfortunately remain: it is not clear whether coinduction could provide
any additional advantage over contextual distance. As for the trace metric in the previous section,
we would like to extend the bisimulation metric to a language with pairs. In order to do that, we
add the action ⊗K to the LMC M Λ. We transform the definition to the probability matrix PΛ

by adding:

PΛ(〈M,N〉)(⊗L) =
∑
V,W

JMK(V) · JNK(W) · {L{V,W/x, y}1}

We now have to transform the definition of validity for Howe’s judgement in order to consider the
case of pairs:

Γ ` µH(M,K) ≤ ε
∆ ` µH(N,T) ≤ γ

Γ,∆ ` L
µ(〈K,T 〉, L) ≤ ι

Γ,∆ ` µH(〈M,N〉, L) ≤ ε+ γ + ι

6 The Tuple Distance

The two metrics we have just defined have been shown to be non-expansive, even if the calculus
is extended with pairs. In that case, however, they do not represent so much of an improvement
with respect to the context distance. Please recall where the problem comes from: we would like
to define actions starting from 〈M,N〉, and respecting the affine paradigm. We have seen that
taking projections as actions lead to an unsound metric, and we have circumvented the problem
by considering an action ⊗L, following [8]. Intuitively the action ⊗L corresponds to replacing the
free variables of L (which are supposed to be included in {x, y}) by the components of the pair:

if for instance V and W are values, we have that 〈V,W 〉 ⊗L {L{V,W/x, y}1}. But what can any
environment L do if we give it V and W as two values to interact with? Let us suppose that
both V and W are functions, and remember that we are in an affine setting. The environment
can (probabilistically) pass some arguments to V , and independently some other arguments to W ,
and then possibly pass to one of the two programs an argument that contains the other one. The
idea behind the construction we present in this section, then, is to keep the information about the
two components of the pairs in the states until they really interact with each other.

Our idea can be made concrete by introducing another LMC, whose states are not closed
terms anymore, but tuples in the form [V1, · · · , Vn], where V1, · · ·Vn are values. The possible
actions the environment can perform on a tuple [V1, · · · , Vn] correspond to the choice of an index
i ∈ {1, · · · , n} and of an action to apply to the value Vi. If Vi is a pair, the only possible action is
to split it into two components. We call this action unfoldi. If Vi is a function, the environment
can pass it an argument, which can possibly be constructed using other Vj ’s. More precisely, the
argument is built by way of an open term C, and a typing context Γ, such that Γ ` C, and Γ is
a subset of {xj | j 6= i}: the free variables of Γ represent the places where other values Vj , with

33

SΛ
mul = {[V1, · · · , Vn] | V1, · · · , Vn closed values }

A Λ
mul = {unfoldi | i ∈ N} ∪ {@(Γ, C)i | i ∈ N, (Γ, C) a (n, i)-open-value }.

PΛ
mul([s1, · · · , 〈N,L〉, · · · , sn] ,unfoldi)([s1, · · · si−1, V,W, si+1 · · · , sn]) = JNK(V) · JLK(W)

PΛ
mul([s1, · · · , λy.N, · · · , sn] ,@(Γ, C)i)([sh1

, · · · ,W, · · · , shm
]) = JN{C{sjl/xjl}/y}K(W)

with {1, · · · , n} = i ∪ {j1, ..., jk} ∪ {h1, ..., hm} (disjoint union) and Γ = x1 , · · ·xjk

Figure 7: The Tuple LMC

j 6= i, are used. Moreover, we ask that for any value W1, · · ·Wn, the term obtained in substituting
xj by Wj is a value: it means that C is one of the xj , or of the form λy.D. We call a pair (Γ, C)
which verifies these conditions a (n, i)-open value. Formally, the LMC M Λ

mul = (SΛ
mul,A

Λ
mul,P

Λ
mul)

is defined in Figure 7.

6.1 The Metric

We are going to define a metric on closed terms which corresponds to linear tests in M Λ
mul. First,

we define tuple traces simply as words over A Λ
mul. The probability to succeed in doing a trace s

starting from a tuple K ∈ SΛ
mul can be naturally defined, and paves the way to defining a metric

on tuples of values:

Prmul(K, ε) = 1;

Prmul(K, a · s) =
∑
H

P(K, a)(H) · Prmul(H, s);

δmul(K,H) = sup
s
|Prmul(K, s)− Prmul(H, s)|.

What we need, however, is a metric on programs. Please remember that states of the LMC M Λ
mul

are tuples of values. Any program M , however, can be viewed as the distribution of values obtained
by evaluating it, i.e. its semantics JMK:

δmul(M,N) = sup
s
|
∑

JMK(V) · Prmul([V] , s)

−
∑

JNK(W) · Prmul([W] , s)|.

The just introduced metric should at least be put in relation to the context metric for it to be
useful. We know from Section 4 that the context metric coincides with the trace metric. The
following theorem relates the trace metric δtr and the metric δmul:

Theorem 7 Let I be any finite set of variables, and {Vx}x∈I and {Wx}x∈I any two collections of
values. For any open term C such that I ` C, it holds that:

δtr(C{Vx/x}(x∈I), C{Wx/x}(x∈I))

≤ δmul([Vx](x∈I) , [Wx](x∈I))

Proof. The proof of Theorem 7 is similar to the proof of non-expansiveness for the trace metric :
first we define a small step semantics, which corresponds to the transition relation in the Markov
Chain M Λ

mul, then we define another small step semantics, which corresponds to keep separated
the context, which is now seen as a term with several holes, and the tuple used to fill it, and
we end the proof by defining a notion of ε-parentality for disributions over pairs of contexts and
tuple, and showing a stability result for ε-parents distributions. These steps are displayed in more
details below.

34

6.1.1 Trace Semantics Big Steps for Tuples

We’re going to be interested in the labelled transition system on finite distributions over SΛ
mul

induced by the Markov Chain M Λ
mul.

Definition 20 We’ll note ∆(SΛ
mul) the set of finite distributions over SΛ

mul. We define a reduction

relation D
a→∆(SΛ

mul)
E , where D ,E ∈ ∆(SΛ

mul), and a ∈ A Λ
mul, by :

D
a→∆(SΛ

mul)

∑
K

D(K) ·PΛ
mul(K)(a)

Now, we define the success probability of a trace for a distribution as :

Definition 21 If s = a1 · · · an,

Prbsmul(D , s) =
∑

E with D
a1→∆(SΛ

mul)
· · · an→∆(SΛ

mul)
E

The relation between this deterministic labelled transition system and the Markov Chain M Λ
mul

can be expressed by the following lemma :

Lemma 29 Let be K ∈ SΛ
mul, and s a trace. Then Prbsmul({K1}, s) = Prmul(K, a).

6.1.2 Trace Semantics Small Steps for Tuples

We would like now to have a notion of small-step semantics for tuples corresponding to the trace
semantics of the Markov Chain. Since we are now small steps, we should consider not only tuples
of values, but tuples of terms as well. Moreover, during the execution, we should remember which
term of the tuple is being reduced. For this reason, we must add intermediate states, where there
is explicit focus on terms being evaluated.

Definition 22 • We define a set T V consisting in closed terms of Λ
〈,〉
⊕ , and distinguished

values of Λ
〈,〉
⊕ : T V = {M | M closed term } ∪ {V̂ | V closed value }. Then we define the

corresponding set of tuples S = {[s1, · · · , sn] | s1, · · · , sn ∈ T V}

• T V focus = {M |M closed term }∪{focusi(M) |M closed term, i ∈ N}∪{V̂ | V closed value },
and Sfocus =

{
[s1, · · · , sn] | s1, · · · , sn ∈ T V focus and the focus integer are all distincts

}
The term which should be reduced first is the term which has the smaller focus index. That’s

the sense of the following definition.

Definition 23 For any K ∈ Sfocus, we note f(K) defined as:

• f(K) =∞ if K has no element with focus.

• f([s1, · · · , sn]) = j such that si = focusj(M) and j is the smaller focus in K

We now define a small step probabilistic labelled reduction relation, where the actions can be
divided in two kinds :

Definition 24 We define a labelled reduction relation K
a→[] D where K ∈ Sfocus, D a distribu-

tion over Sfocus, and where a ∈ Actss = {τ} ∪ {evali | i ∈ N} ∪ {unfoldi | i ∈ N} ∪ {@(Γ, C)i | i ∈
N, (Γ, C) a (n, i)open-value for a n ∈ N}. The rules are the one given in figure 8.

τ is called an internal action, and corresponds to the internal reduction terms under focus in
the tuple. The other actions are called external actions, and correspond to interactions with the
environment. The definition given in Figure 8 use the small step semantics for term →.

We want to formalize the probability of doing a trace for a distribution. First we lift the trace
semantics to a reduction (non probabilistic) to distributions. We’ll note ∆(S focus) the set of finite
distributions over S focus.

35

f(
[
s1, · · · , focusi(M), · · · , sn

]
) = i M → D[

s1, · · · , focusi(M), · · · , sn
] τ→[]

∑
D(N) · {

[
s1, · · · , focusi(N), · · · , sn

]1}
f(
[
s1, · · · , focusi(M), · · · , sn

]
) = i M 6→[

s1, · · · , focusi(M), · · · , sn
] τ→[] ∅

f(
[
s1, · · · , focusi(V), · · · , sn

]
) = i V is a value[

s1, · · · , focusi(V), · · · , sn
] τ→[] {

[
s1, · · · , V̂ , · · · , sn

]1
}

f([s1, · · · , sn]) =∞

[s1, · · · , si−1,M, si+1, · · · , sn]
evali→[] {

[
s1, · · · , si−1, focus1(M), si+1, · · · , sn

]1}
f([s1, · · · , sn]) =∞[

s1, · · · , si−1, ̂〈M,N〉, si+1, · · · , sn
]

unfoldi

→[] {
[
s1, · · · , si−1, focus1(M), focus2(N), si+1, · · · , sn

]1}
f([s1, · · · , sn]) =∞[

s1, · · · , si−1, λ̂y.M, si+1, · · · , sj−1, V̂ , sj+1, · · · , sn
]

@xj
i

→[] {
[
s1, · · · , si−1, focus1(M{V/y}), si+1, · · · , sj−1, sj+1, · · · , sn

]1}
f([s1, · · · , sn]) =∞ (xjk)1≤k≤l ` D {1, · · · , n} = {jk | 1 ≤ k ≤ n} t {hk | 1 ≤ k ≤ m}[
s1, · · · , si−1, λ̂y.M, si+1, · · · , sn

]
@λz.Di

→[] {
[
sh1 , · · · , focus1(M{λz.D{sjk/xjk}1≤k≤l/y}), · · · , shm

]1
}

Figure 8: small-step trace semantics for tuples

K
τ→[] E

D u p · {K1} ε→∆([]) D + p · E

K
a→[] EK D in normal form

D
a→∆([])

∑
Ks.t f(K)=∞D(K) · EK

D
s→∆([]) E E

t⇒∆([]) F

D
s·t⇒∆([]) F

Figure 9: small-step trace semantics on distributions of tuples

36

Definition 25 We define a labelled relation D
a⇒∆([]) E , where D ,E ∈ ∆(Sfocus), and a ∈ Actss.

The rules are the one given in Figure 9.

Definition 26 Prssmul(D , s) = max{
∑
f(K)=∞ E ?(K) | D s⇒∆([]) E ?}

Please observe that for any (external or internal) action a, the relations (between tuples and

distributions over tuples) K
a→[] D , and K

a→∆(SΛ
mul)

D are deterministic. It’s not the case anymore
when we lift to relations between distributions, but we have the following lemma :

Lemma 30 The reduction · τ→∆([]) · on distributions over Sfocus is strongly normalizing.

Proof. It follows from the fact that the relation→ over distributions of terms is strongly normal-
izing. �

We note D? the normal form of D for the relation · τ→∆([]) ·. By abuse of notation, if s ∈
T V focus, we note s? for {s1}?. We can in fact be more precised on the shape of the normal form
of a distribution :

Definition 27 Let be s ∈ T V focus. We define (s?) by :

• If s = focusi(M), then (s?) =
∑
V JsK(V) · {V̂ 1}

• otherwise, (s?) = {s1}

Lemma 31 Let be K = [s1, · · · , sn] ∈ Sfocus. Then K? =
∑
t1,···tn

∏
1≤i≤n((s?i))(ti)·{[t1, · · · , tn]

1}

Proof. The proof is by induction on the maximal number of reduction steps from D to D? (which

is well defined since · τ→∆([]) · is strongly normalizing) �

Now we want to compare the probability to do a trace for the small-step semantics and for the
big-step semantics. For doing that, we show first the following lemma :

Lemma 32 Let be a ∈ A Λ
mul, and D ∈ ∆(SΛ

mul). Then let be E the distribution over SΛ
mul such

that D
a→∆(SΛ

mul)
E . Let be F the distribution over Sfocus such that : D̂

a→[] F
τ→[] · · ·

τ→[] F ?.
Then :

Ê = F ?

Proof. Let be a ∈ A Λ
mul. We can see that for every K ∈ SΛ

mul, there exists an (only one) H ∈ S focus

such that : K
a→[] {H1}. It is sufficient to show that : if D is the distribution over SΛ

mul such that

K
a→∆(SΛ

mul)
D , we have that H? = D̂ . The proof of that is by case analysis on the rules of

a→[],

and using the characterisation given in Lemma 31 of the normal form for
τ→[]

�

Now we can extend this result to traces :

Lemma 33 Let be s a word over A Λ
mul. Let be D a distribution over SΛ

mul. Then : Prbsmul(D , s) =

Prssmul(D̂ , s)

Proof. The proof is by induction on the length of s.

• if s = ε : Prbs
mul(D , ε) =

∑
D . Since D̂ is a normal form for · τ→[] ·, we have that :

Prss
mul(D̂ , ε) =

∑
f(K)=∞ D̂(K) =

∑
D

• if s = a · t then let be E such that D
a→∆(SΛ

mul)
E . Then Prbs

mul(D , s) = Prbs
mul(E , t). We

apply Lemma 32, and we obtain that : D̂
a→[] F , and F ? = Ê . Moreover, we have that :

Prss
mul(D̂ , s) = Prss

mul(F , t) = Prss
mul(F

?, t)

�

37

6.1.3 Trace semantics for distribution over contexts and tuples

Here we consider the same traces used for defining trace semantics for distribution on closed terms.
We are first going to introduce useful notations :

Definition 28 We define an operator (φ |n ψ) on functions by : If φ : A → N, ψ : B → N such
that :

• A ∩B = ∅

• Im(φ) ⊆ {1, · · · , n}

Then (φ |n ψ) : A ∪B → N is defined by :

• (φ |n ψ)(x) = φ(x) if x ∈ A

• (φ |n ψ)(x) = n+ ψ(x) if x ∈ B

We now want to define a set of pairs of context with several holes, and tuples used for filling
these holes. Formally the idea is the following : We first define things for the untyped case (without
pairs) :

Definition 29 • Let be φ : V → N a partial injective function, C an (open) term, and
[s1, · · · , sn] an element of Sfocus. We define the judgment x1, ...xm ` (C, φ, [s1, · · · , sn])
by :

– {x1, · · · , xm} ∩Dom(φ) = ∅
– x1 · · ·xn, (y)y∈Dom(φ) ` C
– Im(φ) ⊆ {1 · · ·n}

We define the judgment x1, ...xm ` (C, φ, [s1, · · · , sn]) : val by :

– x1, ...xm ` (C, φ, [s1, · · · , sn])

– if C = y, then there exists a value V such that : sφ(y) = V̂

– if C is not a variable, C is an abstraction (that is, C = λy.D, where D is an open term),
or C is a pair (that is C = 〈D1,D2〉, where D1 and D2 are open terms).

• We define the set of pairs of context and tuples which are well formed :

A = {(C, φ, [s1, · · · , sn]) such that ∅ ` (C, φ, [s1, · · · , sn])}

• We define a notion of congruence for elements in A : For every permutation θ : {1, .., n} →
{1, ..., n}, (C, φ [s1, · · · , sn]) ≡ (C, θ−1 ◦ φ, (

[
sθ(1), · · · , sθ(n)

]
))

We should modify the definition if we consider a typed calculus :

Definition 30 • We define the judgment x1 : σ1, ...xm : σm ` (C, φ, [M1, · · · ,Mn]) : τ by :

– {x1, · · · , xm} ∩Dom(φ) = ∅
– x1 : σ1 · · ·xn : σn, (y : γy)y∈Dom(φ) ` C : τ

– Im(φ) ⊆ {1, · · · , n}, and `Mφ(y) : γy for every y ∈ Dom(φ)

• We define the set of pairs of context and tuples which are well formed :

Aσ = {(C, φ, [M1, · · · ,Mn]) | ∅ ` (C, φ, [M1, · · · ,Mn]) : σ}

• We define a notion of congruence for elements in A : For every permutation σ : {1, .., n} →
{1, ..., n}, (C, φ [M1, · · · ,Mn]) ≡ (C, σ−1 ◦ φ,

[
Mσ(1), · · · ,Mσ(n)

]
)

38

{(C, φ, [s1, · · · , sn])1} ε→ E
` (D, ψ, [t1, · · · , tp])
` (C, φ, [s1, · · · , sn])

Dom(φ) ∩Dom(ψ) = ∅

D u p · {(CD, (φ |n ψ) [s1, · · · , sn, t1, · · · tp])1}
ε→ D + p ·

∑
E (E , ν, [u1, · · · , uq]) · (ED, (ν |q ψ), [u1, · · · , uq, t1, · · · tp])

{(D, ψ, [t1, · · · , tp])1}
ε→ E

` (C, φ, [s1, · · · , sn]) : val
` (D, ψ, [t1, · · · , tp])

Dom(φ) ∩Dom(ψ) = ∅

D u p · {(CD, (φ |n ψ) [s1, · · · , sn, t1, · · · tp])1}
ε→ D + p ·

∑
E (E , ν, [u1, · · · , uq]) · (CE , (φ |n ν), [s1, · · · , sn, u1, · · ·uq])

f([M, s1, · · · , sn]) =∞

D u p · {x, ({x→ 1} |1 φ), [M, s1, · · · , sn]
1} ε→ D + p · (x, ({x→ 1} |1 φ),

[
focus1(M), s2, · · · , sn

]
)

M ⇒ E f(
[
focusi(M), s1, · · · , sn

]
) = i

D u p · {x, ({x→ 1} |1 φ),
[
focusi(M), s1, · · · , sn

]1} ε→ D + p · (x, ({x→ 1} |1 φ),
[
focusi(E), s1, · · · , sn

]
)

f(
[
focusi(V), s1, · · · , sn

]
) = i

D u p · {x, ({x→ 1} |1 φ),
[
focusi(V), s1, · · · , sn

]1} ε→ D + p · (x, ({x→ 1} |1 φ),
[
V̂ , s1, · · · , sn

]
)

` (C, φ, [s1, · · · , sq]) : val V = C{Mφ(z)/z}z∈FV (C)

D u p · {xC, (((x→ 1) |1 φ) |q ψ),
[
λ̂y.L, s1 · · · sq, t1 · · · , tn

]1
} ε→ D + p · {x, ((x→ 1) |1 ψ),

[
focus1(L{V/x}), t1, · · · , tn

]1}
` (C, φ, [s1, · · · , sn])

` (D, ψ, [t1, · · · , tp]) : val
Dom(φ) ∩Dom(ψ) = ∅

D u p · {(λx.C)D, (φ |n ψ), [s1, · · · sn, t1, · · · , tp]1}
ε→ D + p · {C{D/x}, (φ |n ψ), [s1, · · · sn, t1, · · · , tp]1}

p · {λx.C, φ, [s1, · · · , sn]1} @V→ p · {(C{V/x}, φ, [s1, · · · , sn])1}

p · {(x, ((x→ 1) |1 φ),
[
λ̂y.N, s1, · · · , sn

]
)
1

} @V→ p · {(x, ((x→ 1) |1 φ),
[
focus1(N{V/y}), s1, · · · , sn

]1}
Di

@V→ Ei ∀i,Di value distribution F stopped distribution
·∑
i Di uF

@V→
∑
i Ei

D
ε⇒ D

D
s→ E E

t⇒ F

D
s·t⇒ F

Figure 10: small-step trace relation on distributions over A (without pairs)

In the following, we consider equivalence class of ≡. It corresponds to reorder elements of the
tuple, and to modify the function φ in order to have still the same mapping from the free variables
of C.

We define a small-step semantics on elements of A.
Please observe that the rules would be exactly the same for an strictly linear (that is, not

affine) calculus. The only thing to change would be the definition of : Γ ` (C, φ,K).
We need a definition of A taking into account possible other free variables We need to add

rules specific for the language with pairs :
Please observe that there is two different non-determinism in the rules : the choice of the part

of the distribution which is going to be reduced, and the way the tuple is divided (for the affine

39

` (C, φ, [M1, · · · ,Mn]) : σ ⊗ τ
x : σ, y : τ ` (D, ψ, [N1, · · · , Np]) : γ
Dom(φ) ∩ (Dom(ψ) ∪ {x, y}) = ∅

{(C, φ, [M1, · · · ,Mn])1} ε→ E

D u p · {(let 〈x, y〉 = C in D, (φ |n ψ) [M1, · · · ,Mn, N1, · · ·Np])1}
ε→

D + p ·
∑

E (E , ν, [L1, · · · , Lq]) · (let 〈x, y〉 = E in D, (ν |q ψ), [L1, · · · , Lq, N1, · · ·Np])

{(C, φ, [M1, · · · ,Mn])1} ε→ E
Dom(φ),Dom(ψ), {x, y},Dom(ν)

disjoints sets

` C, φ, [M1, · · · ,Mn] : σ
` D, ψ, [N1, · · · , Nm] : τ

x : σ, y : τ ` (E , ν, [L1, · · · , Ll] : γ

D u p · {(let 〈x, y〉 = 〈C,D〉 in E , (φ |n (ψ |m ν)), [M1, · · · ,Mn, N1, · · ·Nm, L1 · · ·Ll])1}
ε→

D + p ·
∑

E (F , η, [K1, · · · ,Kq]) · (let 〈x, y〉 = 〈F ,D〉 in E , (η |q (ψ |m ν)), [K1, · · · ,Kq, N1, · · ·Nm, L1, · · ·Ll])

{(D, ψ, [N1, · · · , Nm])1} ε→ E C{Mφ(x)/x}x∈Dom(φ) value

` C, φ, [M1, · · · ,Mn] : σ
` D, ψ, [N1, · · · , Nm] : τ

x : σ, y : τ ` (E , ν, [L1, · · · , Ll] : γ
Dom(φ),Dom(ψ), {x, y},Dom(ν) disjoints sets

D u p · {(let 〈x, y〉 = 〈C,D〉 in E , (φ |n (ψ |m ν)) [M1, · · · ,Mn, N1, · · ·Nm, L1 · · ·Ll])1}
ε→

D + p ·
∑

E (F , η, [K1, · · · ,Kq]) · {(let 〈x, y〉 = 〈F ,D〉 in E , (φ |n (η |q ν)), [M1, · · · ,Mn,K1, · · ·Kq, L1, · · ·Ll])1}

C{Mφ(z)/z}z∈Dom(φ) value
D{Nψ(z)/z}z∈Dom(ψ) value

` C, φ, [M1, · · · ,Mn] : σ
` D, ψ, [N1, · · · , Nm] : τ

x : σ, y : τ ` (E , ν, [L1, · · · , Ll] : γ
Dom(φ),Dom(ψ), {x, y},Dom(ν) disjoints sets

D u p · {(let 〈x, y〉 = 〈C,D〉 in E , (φ |n (ψ |m ν)) [M1, · · · ,Mn, N1, · · ·Nm, L1 · · ·Ll])1}
ε→

D + p · {(E{C/x}{D/y}, (φ |n (ψ |m ν)), [M1, · · · ,Mn, N1, · · ·Nm, L1, · · ·Ll])1}

M1 = 〈N,L〉 x : σ, y : τ ` (C, φ, [M2, · · · ,Mn]) : γ
z 6∈ Dom(φ)

D u p · {(let 〈x, y〉 = z in C, ({z → 1} |1 φ), [M1, · · · ,Mn])
1} ε→

D + p · {(C, ({x→ 1, y → 2} |2 φ), [N,L,M2, · · ·Mn])
1}

M1 = 〈N,L〉

p · {(z, ({z → 1} |1 φ), [M1, · · · ,Mn])
1} 〈,〉·C→

p · {(C, ({x→ 1, y → 2} |2 φ), [N,L,M2, · · ·Mn])
1}

M1 = 〈N,L〉

p · {(〈D, E〉, φ, [M1, · · · ,Mn])1} 〈,〉·C→
p · {(C{D/x}{E/y}, φ, [M1, · · · ,Mn])1}

Figure 11: small-step trace relation on distributions over A for pairs

40

case). The second one is not really meaningful, since we have the following lemma :

Lemma 34 Suppose that : ` (C, φ,K), and let be D , E such that {(C, φ,K)
1} a→ D and {(C, φ,K)

1} a→
E . Then D ≡ E .

Proof. Let be ` (C, φ,K).
We are first going to show the following result : Suppose that K = [M1, · · · ,Mn, · · · ,Mq],

et that φ(FV (C)) ⊆ {1, · · · , n}. Then let be D such that : (C, φ,K)
a→ D . Then there

exist E such that : (C, (φ) �FV (C), [M1, · · · ,Mn]
a→ E , and D =

∑
E (D, ψ, [N1, · · · , Np]) ·

{(D, ν, [N1, · · ·Np,Mn+1, · · · ,Mn])
1}, with ν(x) = ψ(x) if x ∈ FV (C), and ν(x) = p − n + φ(x)

otherwise. We show that by induction on the derivation of (C, φ,K)
a→ D .

Then it is sufficient to remark that, if the free variables of C correspond exactly to the terms in
the tuple, there is only one possible rule that can be applied. �

Definition 31 Let be D a distribution over A. We define F(D) a distribution over closed terms

by : F(D) =
∑

D(C, φ, [M1, · · · ,Mn]) · {C{Mφ(x)/x}x∈Dom(φ)
1}

We would like to know that, if a distribution on terms can do a trace, then the correponding
distribution where we split contexts and terms filling them can do the same trace. Unfortunately,
we need to be more precis on how we split the distribution, and especially on what focus we can
have on the components of the tuple. (For example,

(
x, (x→ 1),

[
M, focus1(N)

])
6→, since it is

not possible to evaluate M before having evaluated N .) So we define a notion of coherent tuples
in S focus for a given context, where the idea is : This context could have triggered the evaluation
on the terms which are under focus :

Lemma 35 Let be D a distribution over A, and s a trace such that : F(D)
s⇒ E . Then there

exists F such that D
s⇒ F , and F(F) = E .

The rules of the trace semantics for elements in A are designed to match the one for trace
semantics for terms. More precisely, it means that :

Lemma 36 Let be ` (C, φ, [M1, · · · ,Mn]), and let be D such that : {(C, φ, [M1, · · · ,Mn])
1} ε→ D .

Then {C{Mφx/x}x∈FV (C)
1} ε→ F(D)

Proof. The proof is by case analysis of the derivation of {(C, φ, [M1, · · · ,Mn])
1} ε→ D �

Lemma 37 Let be D a distribution over A, and s a trace. Suppose that D
s⇒ E . Then F(D)

s⇒
F(E ?)

Proof. It is in fact sufficient to show :

• If D
ε→ E , then there exist F , such that E

ε⇒ F , and F(D)
ε→ F(F). No matter the last

rule used in the derivation of D
a→ E , it is of the form : D = G u p · (C, φ,K)

ε→ G + p ·H
with {(C, φ,K)

1} ε→ H . Now we have to consider all the possible (D, ψ,H) ∈ S(G) such
that D{Hψ(x)/x}x∈FV (D) = C{Kψ(x)/x}x∈FV (C)

• and : if D
a→ E , then F(D)

a→ F(E)

�

41

6.1.4 Link beetween trace semantics on terms and trace semantics on A.

Definition 32 Let be D and E two distributions over A. For ε ≥ 0, we say that D and E are
ε-related if : there exist pi, ..., pm positive reals, and D1, ...,Dd distincts contexts, and F1, ...,Fd,
G1, ...,Gd distributions on tuples such that :

D =
∑
j

pj · (Dj ,Fj)

E =
∑
j

pj · (Dj ,Gj)

δmul(Fj ,Gj) ≤ ε

Lemma 38 The relation · ε→ · on distributions over A is strongly normalizing.

Lemma 39 Let be D , E two ε-related distributions. Then D? and E ? are related.

Lemma 40 Let be D , E two ε-related distribution. Let be F ?, and G ? in normal form such that
: D

s⇒ F ?, and E
s⇒ G ?. Then F and G are ε-related

Theorem 7 is deduced of Lemma 40 in a similar way as for the trace distance.
�

Theorem 7 can be read as a non-expansiveness result: if we have a system E , playing the role
of the environment, and which is prepared to interact with n components, and moreover we have
two tuples K and H of length n, then the tuple distance between K and H gives us an upper
bound on the trace distance between the system composed of E interacting with K, and the system
composed of E interacting with H.

We can now see that δmul coincides with the context metric: one inequality comes from Theorem
7, the other comes from the fact that any trace s over A Λ

mul and designed to start from a single
value, can be simulated by a context.

Theorem 8 On programs, δmul = δctx

Proof. • We apply Theorem 7 to λx.M and λx.N , which are values, and the context C = [·]:

δtr(M,N) = δtr(λx.M, λx.N)

≤ δmul([λx.M] , λx.N)

= δmul(M,N)

• Let be s a trace in the LMC M Λ
mul which starts from a single value. Then we can find a

context that simulate this trace.
�

6.2 Examples

The tuple distance, that we have just proved to be fully-abstract, can be seen as yet another
presentation of the context distance. But there is much more: it allows to evaluate the distance
between concrete programs, even when the latter contains pairs, in a relatively easy way. In this
section, we will give two examples.

42

6.2.1 A Simple Example

Consider the terms M and N defined in Example 3. We can prove that δmul(M,N) = 3
4 . We

are first going to show that δmul(M,N) ≥ 3
4 . In order to show that, we are going to present

a particular trace s such that |Prmul([M] , s) − Prmul([N] , s)| = 3
4 . More precisely, we take

s = unfold1 ·@(∅, I)
1 ·@(∅, I)

2
: it corresponds to first separating the two components of the

pair, and then passing I as an argument to the first and to the second component. The relevant
fragment of M Λ

mul can be found in Figure 12. In particular, we can see that Pr([M] , s) = 1, and
Pr([N] , s) = 1

4 . Now we want to show the reverse inequality, namely that δmul(M,N) ≤ 3
4 . For

[M] =
[〈λx.I, λx.I〉]

[N] =
[〈λx.(I ⊕ Ω), λx.(I ⊕ Ω)〉]

[λx.I, λx.I] [λx.(I ⊕ Ω), λx.(I ⊕ Ω)]

[I, λx.I] [I, λx.(I ⊕ Ω)]

[I, I] [I, I]

unfold11 unfold11

@(∅, I)11 @(∅, I)11
2

@(∅, I)21 @(∅, I)21
2

Figure 12: The relevant fragment of the tuple LMC

that, we are going to use the alternative characterisation of trace distance : it is sufficient to find
a 3

4 -bisimulation R on the LTS of distributions such that ({[M]
1}), ({[N]

1}) ∈ R

6.2.2 A More Complicated Example

Please remember the example we presented in Section 2. We note {un}n∈N the sequence defined
as: un =

∏
1≤i≤n (1− 1

2i). Please observe that the sequence (un)n∈N has a limit strictly between
0 and 1.

Lemma 41 La suite (un)n∈N has a limit l, and 1
2 > l > 0

Proof. • un is a decreasing and bounded sequence : it has a limit.

• l > u1 = 1
2

• We consider the sequence : vn = log un =
∑

1≤i≤n log (1− (1
2)
i
). We pose wn = log 1− (1

2)
i
.

Then we consider

| wn
wn+1

| = |
log (1− (1

2)
n
)

log (1− (1
2)
n+1

)
| →n→∞

1

2

D’Alembert’s theorem for infinite sum implies that the serie is convergent and has a finite
limit.

�

Theorem 9 For every n ∈ N, δmul(Mn, Nn) = 1− un.

Proof. We first show that δmul(Mn, Nn) ≥ 1 − un. As in the previous example, we do that by
finding, for each n ∈ N, a trace sn such that |Pr([Mn] , sn) − Pr([Nn] , sn)| = 1 − un. We define
the sequence (sn)n∈N inductively as follows:

s0 = ε sn+1 = unfold1 ·@(∅, I)
1 · sn

s0 is the trace which always succeeds, whatever the starting state is. sn+1 corresponds to separating
the two components of the pair which is in first position in the tuple, then passing the identity

43

Pr([M0] , s0) = 1 Pr([N0] , s0) = 1

Pr([Mn+1] , sn+1) = 1 · Pr([Mn] , sn)

Pr([Nn+1] , sn+1) = (1−
1

2n+1
) · Pr([Nn] , sn)

Figure 13: Recursive equations verified by sn

as an argument to the first component of this pair, and then executing sn. For this sequence of
traces, the recursive equations of Figure 13 are verified (the proof can be found in [5]). We can see
by solving these equations that for every n ∈ N, Pr(Mn, sn) = 1 and Pr(Nn, sn) = un. As a direct
consequence, we obtain the result. We want now to show that δmul(Mn, Nn) ≤ 1−un. To do that,
we need to establish that there doesn’t exist a trace t such that |Pr([Mn] , t)−Pr([Nn] , t)| > 1−un.
We’re in fact going to show something stronger: for every n ∈ N, we’re going to define a set An
of pairs of tuple, which contains the pair ([M]n, [Nn]), and such that for every (K,H) ∈ An, for
every trace t, |Pr(K, t) − Pr(H, t)| ≤ 1 − un. Intuitively, the idea behind the sequence {An}n∈N
is the following: if we start from [Mn], do a trace of even length, and end up in a tuple K with a
non-zero probability, and if when we do the same trace starting from [Nn] ending up in the tuple
H, then the pair of tuple (K,H) is in one of the Aj , with j smaller than n.

Definition 33 Let be n ∈ N. Let An be the set of (K,H) such that: there exist m ∈ N, and
ki ≥ n+ 1 (for 1 ≤ i ≤ m), where:

K = [Mn, [λx.Ω]m] ;

H =
[
Nn, [λx.Ω⊕

1

2ki I]1≤i≤m

]
.

We want now to give an upper bound to the separation between K and H any trace can induce,
if (K,H) ∈ An.

Lemma 42 For every n ∈ N, for every (K,H) ∈ An, we can partition the set of traces as:

T r ={s | Pr(K, s) = 0 and Pr(H, s) ≤ 1

2
}⋃

{s | Pr(K, s) = 1 and Pr(H, s) ≥ un}.

Proof. Let s ∈ T r. We are going to show by induction on the length of s that for every n ∈ N,
for every (K,H) ∈ An, either Pr(K, s) = 0 and Pr(H, s) ≤ 1

2 , or Pr(K, s) = 1 and Pr(H, s) ≥
un.
• If s = ε, then for every n ∈ N and (K,H) ∈ An Pr(K, s) = Pr(H, s) = 1, and we are in the

second case.
• If the length of s is l > 0. Let be n ∈ N, and (K,H) ∈ An. Then we can write:

K = [Mn, [λx.Ω]m] ;

H =
[
Nn, [λx.Ω⊕

1

2ki I]1≤i≤m

]
with ki ≥ n+ 1.

We are now going to distinguish the cases depending on which element of the tuple is applied
the first action of the trace.
• If the first action is not applied to the first element of the tuple, then s = @(Γ, C)j · t, with
j > 1: Then Pr(K, s) = 0, and Pr(H, s) ≤ 1

2kj
≤ 1

2 : we are in the first case.
• If the first action is applied to the first element of the tuple : Then we can see that
s = unfold1 · t (since the first element of the tuple is actually a pair, the only action that
can be applied to it is the unfold action).

44

• First, let’s consider the case where n = 0. Please remember that by definition we have
that M0 = N0 = 〈λx.Ω, λx.Ω〉. Observe that:

K1 =
[
[λx.Ω]m+2

]
;

H1 =
[
λx.Ω, λx.Ω, [λx.Ω⊕

1

2ki I]1≤i≤m

]
.

With these notations, we can see that Pr(K, s) = Pr(K1, t), and Pr(H, s) = Pr(H1, t).
If t = ε, these two expressions are equal to 1, and we are in the second case. Otherwise,
Pr(K1, t) = 0, and Pr(H1, t) ≤ 1

2 , and we are in the first case.
• Now let’s consider the case where n ≥ 1. Please remember that:

Mn = 〈λx.Mn−1, λx.Ω〉;

Nn = 〈λx.(Nn−1 ⊕
1

2n Ω), λx.(Ω⊕ 1
2n I)〉.

Then we’ll note:

K2 = [λx.Mn−1, λx.Ω, [λx.Ω]m];

H2 =
[
λx.(Nn−1 ⊕

1
2n Ω), λx.(Ω⊕ 1

2n I), [λx.(Ω⊕
1

2ki I)]1≤i≤m

]
.

With these notations, we can see that Pr(K, s) = Pr(K2, t), and Pr(H, s) = Pr(H2, t).
Now we have to consider the different possible form of the trace t :
• if t = ε, Pr(K, s) = Pr(H, t) = 1.

• if t = @(Γ, C)j · u, with j > 1, we have Pr(K1, u) = 0 and Pr(K2, u) ≤ 1
2n ≤ 1

2 ,
and we are in the first case.

• if t = @(Γ, C)1 · u. Please remember the semantics of this action in the Markov
Chain : If we start from K2, with probability 1 we go to a state K3 of the form :

K3 =
[
Mn−1, [λx.Ω]

l
]

with l ≤ m. If we start from H2, with probability (1 − 1
2n) we go in a state H3 of

the form :
H3 =

[
Nn−1, [λx.(Ω⊕

1

2ki I)]1≤i≤l

]
with ki ≥ n. Now we can see that :

Pr(K, s) = Pr(K3, u);

Pr(H, s) = (1− 1

2n
) · Pr(H3, u).

Moreover, please observe that (K3, H3) ∈ An−1, so we can apply the induction
hypothesis (since the length of u is strictly smaller that the length of s). Now, there
are two possible cases :
• Pr(K3, u) = 0, and Pr(H3, u) ≤ 1

2 . Then we can see that the result holds, since
it implies that : Pr(K, s) = 0 and Pr(H, s) ≤ (1− 1

2n) · 1
2 ≤

1
2 .

• Pr(K3, u) = 1, and Pr(H3, u) ≥ un−1. Then we can see that the result holds,
since it implies that : Pr(K, s) = 1 and Pr(H, s) ≥ (1− 1

2n) · un−1 = un.
�

The result we’re seeking to show is a direct consequence of Lemma 42: we can see easily that for
any trace s, if (K,H) ∈ An, the separation that s can induce is smaller than 1 − un. Indeed, let
be s ∈ T r. Since ([Mn] , [Nn]) ∈ An, we can see that :

• Or the trace s is in the first set of the partition given by Lemma 42, and |Pr(Mn, s) −
Pr(Nn, t)| ≤ 1

2 ≤ 1− un.

• Or the trace s is in the second set of this partition, and then |Pr(Mn, s)−Pr(Nn, t)| ≤ 1−un.

�

45

6.3 On Tuples and Copying

The tuple distance naturally suggests a way to handle λ-calculi in which copying is indeed allowed.
Although the details are clearly outside the scope of this paper, we anyway want to give some
hints about why this is the case.

What makes the trace and behavioural distances unsound in presence of copying is their inabil-
ity to capture an environment which can access the program at hand more than once. In our view,
however, the problem does not come from the way those distances are defined in the abstract, but
rather in the way the underlying LMC reflects the operational semantics of the calculus at hand.
In a sense, it is in the responsibility of the LMC to guarantee that the environment can access
terms multiple times. The LMC M Λ we introduced in this paper (which is close to the ones from
the literature [4, 6, 8]), as an example, is not adequate.

Suppose, however, to extend M Λ
mul to an LMC for a λ-calculus in the style of Wadler’s linear

λ-calculus [29]: there, the grammar of terms includes a construct !M whose purpose is marking
those subterms which can indeed be duplicated. The actions the environment can perform on a
term in the form !M simply reflects the above: the environment can create a new copy of !M ,
but also keeps the possibility to access !M in the future. One immediately realises that tuples are
indeed the right way to model the access to both !M and M .

7 Conclusions

We have initiated the study of metrics in higher-order languages, starting with the relatively easy
case of affine λ-terms, where copying capabilities are simply not available. We showed that three
different notions of distance are sound (and sometime fully-abstract) for the context distance,
the natural generalisation of Morris’ observational equivalence. One of them, the tuple distance,
reflects the inherently monoidal structure of the underlying calculus, this way allowing to solve
some nontrivial distance problems.

We are actively working on extending the results described here to the non-affine case, which for
various reasons turns out to be more difficult, as discussed in Section 2. We are in particular quite
optimistic about the possibility of generalising the tuple distance to a metric reflecting copying.
The real challenge, however, consists in handling the case in which copying is indeed available, but
the number of copies of a given term the environment can have access to is somehow bounded,
maybe polynomially on the value on an security parameter. That would indeed be a way to get
closer to computational indistinguishability, a central notion in modern cryptography.

References

[1] S. Abramsky. The Lazy λ-Calculus. In D. Turner, editor, Research Topics in Functional
Programming, pages 65–117. Addison Wesley, 1990.

[2] A. Asperti and L. Roversi. Intuitionistic light affine logic. ACM Trans. Comput. Log.,
3(1):137–175, 2002.

[3] A. Bizjak and L. Birkedal. Step-indexed logical relations for probability. To appear in FoS-
SaCS 2015.

[4] R. Crubillé and U. Dal Lago. On probabilistic applicative bisimulation and call-by-value
λ-calculi. In ESOP, pages 209–228, 2014.

[5] R. Crubillé and U. Dal Lago. Metric reasoning about λ-terms: the affine case (long version).
Available at http://eternal.cs.unibo.it/mrltac.pdf, 2015.

[6] U. Dal Lago, D. Sangiorgi, and M. Alberti. On coinductive equivalences for higher-order
probabilistic functional programs. In POPL, pages 297–308, 2014.

46

[7] V. Danos and T. Ehrhard. Probabilistic coherence spaces as a model of higher-order proba-
bilistic computation. Inf. Comput., 209(6):966–991, 2011.

[8] Y. Deng and Y. Zhang. Program equivalence in linear contexts. To appear in Theoretical
Computer Science, 2014.

[9] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labeled markov
systems. In CONCUR, 1999.

[10] J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden. The metric analogue of weak
bisimulation for probabilistic processes. In LICS, pages 413–422, 2002.

[11] T. Ehrhard, C. Tasson, and M. Pagani. Probabilistic coherence spaces are fully abstract for
probabilistic PCF. In POPL, pages 309–320, 2014.

[12] D. Gebler and S. Tini. Fixed-point characterization of compositionality properties of proba-
bilistic processes combinators. In EXPRESS-SOS, pages 63–78, 2014.

[13] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness, volume 17
of Algorithms and Combinatorics. Springer, 1998.

[14] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

[15] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum. Church:
a language for generative models. In UAI 2008, pages 220–229, 2008.

[16] D. J. Howe. Proving congruence of bisimulation in functional programming languages. Inf.
Comput., 124(2):103–112, 1996.

[17] C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations. In LICS, pages
186–195, 1989.

[18] L. V. Kantorovich. On the transfer of masses. In Dokl. Akad. Nauk. SSSR, volume 37, pages
227–229, 1942.

[19] S. B. Lassen. Relational reasoning about contexts. In Higher Order Operational Techniques in
Semantics, Publications of the Newton Institute, pages 91–135. Cambridge University Press,
1998.

[20] H. G. Mairson. Linear lambda calculus and ptime-completeness. J. Funct. Program.,
14(6):623–633, 2004.

[21] C. D. Manning and H. Schütze. Foundations of statistical natural language processing, volume
999. MIT Press, 1999.

[22] J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-time
process calculus for the analysis of cryptographic protocols. Theor. Comput. Sci., 353(1-
3):118–164, 2006.

[23] S. Park, F. Pfenning, and S. Thrun. A probabilistic language based on sampling functions.
ACM Trans. Program. Lang. Syst., 31(1), 2008.

[24] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Mor-
gan Kaufmann, 1988.

[25] A. M. Pitts. Operationally-based theories of program equivalence. In Semantics and Logics
of Computation, pages 241–298. Cambridge University Press, 1997.

[26] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of probability distributions.
In POPL, pages 154–165, 2002.

47

[27] S. Thrun. Robotic mapping: A survey. Exploring artificial intelligence in the new millennium,
pages 1–35, 2002.

[28] F. van Breugel and J. Worrell. A behavioural pseudometric for probabilistic transition sys-
tems. Theor. Comput. Sci., 331(1):115–142, 2005.

[29] P. Wadler. A syntax for linear logic. In MFPS, number 802 in LNCS, pages 513–529, 1993.

48

